摘要
对不同冻融损伤程度的混凝土圆环体试件进行了试验研究.结果表明:当相对冻融深度小于临界值时,混凝土的峰值应力、峰值应变均呈线性退化,超过临界值后则保持稳定;当冻融循环次数由100次增加到200次时,相对冻融深度临界值由0.5增大到0.8;基于应变等价性假说和统计损伤理论,建立了不同冻融损伤程度下承压混凝土的应力-应变关系模型.
寒冷地区桥梁会遭受冻融损伤,同时荷载的作用使桥梁结构混凝土处于承载状
国内外学者对冻融损伤混凝土基本力学性能开展了众多的试验研究,发现冻融循环导致混凝土的表面剥落,力学性能下
冻融后混凝土可分为损伤层、损伤过渡层和未损伤
为得到不同冻融损伤程度的混凝土试件,设计了不同应力水平作用下的混凝土圆柱体试件,试件尺寸均为200×1 000 mm(见

图1 试件尺寸及张拉装置
Fig.1 Specimen size and tensioning device(size: mm)
Cement | Water | Fine aggregate | Coarse aggregate | Reinforcing agent | Water‑reducing agent | Fly ash |
---|---|---|---|---|---|---|
1.00 | 0.42 | 2.39 | 3.36 | 5.15 | 7.80 | 95.00 |
冻融循环次数(N)分别为0、100、200、250次;混凝土的应力水平(μ)为0、0.2、0.3和0.4,即张拉应力为混凝土轴心抗压强度平均值的0%、20%、30%和40%.
张拉试验开始前对试件进行为期4 d的浸泡,采用自行设计加工的反力架进行张拉,张拉装置如
考虑冻融损伤由表及里发展与不同深度处混凝土力学性能的非均匀退化,对冻融后的承压混凝土圆柱体试件进行分层取芯,得到圆环体试件,以研究不同冻融损伤程度下承压混凝土力学性能的退化规律.
冻融结束后对试件进行切割.为了消除端部复杂应力的影响,每个混凝土圆柱体试件沿长度方向两端各截掉200 mm,形成3个200×200 mm的圆柱试件,分4层进行取芯,见

图2 冻融损伤承压混凝土圆柱体构件取芯流程图
Fig.2 Flow chart of core removal for freeze‑thaw damaged stressed concrete cylinder members(size: mm)

图3 典型混凝土圆柱体构件表面裂缝的开展情况
Fig.3 Development of surface cracks of typical concrete cylinder members

图4 冻融损伤混凝土的单调受压破坏形态
Fig.4 Monotonic compression failure modes of freeze‑thaw damaged concrete(λ=0.1)

图5 冻融损伤承压混凝土圆环体试件的单调受压应力-应变曲线和理论结果
Fig.5 Monotonic compressive stress‑strain curves and theoretical results of the freeze‑thaw damaged stressed concrete torus‑shaped specimens
(1)当相对冻融深度小于0.3时,随着冻融循环次数和应力水平的增加,混凝土的应力-应变曲线逐渐趋于平缓,整体右移.当相对冻融深度为0.1,冻融循环次数为0~250次时,混凝土的峰值应力降低了32%~77%,峰值应变增加了17%~110%.
(2)当相对冻融深度分别为0.3和0.5时,应力-应变曲线在100次冻融循环时发生了明显的变化.当冻融循环次数增加到200次时,2种相对冻融深度下混凝土应力-应变曲线的发展规律相似.
(3)当相对冻融深度为0.8时,不同工况下混凝土的应力-应变曲线与未冻融时无明显差异.这表明混凝土的浅层损伤大于深层,相对冻融深度超过0.8时混凝土几乎不受冻融影响.

图6 冻融损伤混凝土相对峰值应力的退化规律
Fig.6 Degradation of relative peak stress of freeze‑thaw damaged concrete

图7 冻融损伤混凝土相对峰值应变的退化规律
Fig.7 Degradation of relative peak stain of freeze‑thaw damaged concrete
(1)当相对冻融深度小于0.3时,随着冻融循环次数的增加,混凝土的峰值应力逐渐降低而峰值应变增加;当相对冻融深度增加到0.5时,100次冻融循环前混凝土的峰值应力较未冻融时相差不大,超过100次循环后的峰值应力显著降低;当相对冻融深度增加到0.8时,不同冻融循环次数下混凝土的重复受压峰值应力相差不大,表明该层不受冻融循环的影响.当相对冻融深度为0.1,应力水平为0时,冻融100、200、250次试件的峰值应力分别降低了23%、40%和50%.
(2)在不同的冻融循环次数下,混凝土的相对冻融深度存在临界值.当冻融循环次数为100次时,相对冻融深度临界值为0.5;当冻融循环次数增加到200次时,相对冻融深度临界值为0.8.当相对冻融深度小于临界值时,混凝土的峰值应力和峰值应变呈线性退化,超过临界值后保持稳定.
基于Lemaitre应变等价性假
(1) |
(2) |
式中:σn为经历n次冻融后的混凝土应力,MPa;E0为未冻融混凝土的弹性模量,MPa;Dm为混凝土的初始损伤值;En为经历n次冻融后混凝土的弹性模量,MPa.
假设当混凝土受到荷载作用后,其微元强度符合Weibull概率分
(3) |
式中:a和b分别为Weibull分布参数.
根据应变等价原理,可以得到荷载作用下混凝土的本构关系:
(4) |
(5) |
将
(6) |
通过

图8 参数a随冻融循环次数的变化
Fig.8 Variations of parameter a with freeze‑thaw cycles

图9 参数b随冻融循环次数的变化
Fig.9 Variations of parameter b with freeze‑thaw cycles
将不同深度处参数a和b的取值代入本构方程中,得到理论计算结果如
(1)冻融损伤混凝土的浅层损伤大于深层.当相对冻融深度为0.1时,混凝土的应力-应变曲线随着冻融次数的增加逐渐趋于扁平,整体右移.当相对冻融深度分别为0.3和0.5时,应力-应变曲线在100次冻融循环时发生了明显的变化.当相对冻融深度为0.8时,各冻融循环次数下的应力-应变曲线与未冻融时基本吻合,表明混凝土未有较大的损伤劣化行为.
(2)不同冻融循环次数对应不同的相对冻融深度临界值.当冻融循环次数为100次时,相对冻融深度临界值为0.5;当冻融循环次数增加到200次时,相对冻融深度临界值增加到0.8.当相对冻融深度小于临界值时,混凝土的峰值应力、峰值应变呈线性退化,超过临界值后保持稳定.
(3)基于应变等价性假说和统计损伤理论,建立了不同冻融损伤程度下承压混凝土的受压应力-应变关系模型.
参考文献
孙杰, 冯川, 吴爽, 等. 持续荷载与冻融循环耦合作用下纤维混凝土损伤性能研究[J]. 硅酸盐通报, 2022, 41(8): 2728‑2738. [百度学术]
SUN Jie, FENG Chuan, WU Shuang, et al. Study on the damage performance of fiber reinforced concrete under the coupling action of continuous load and freeze‑thaw cycles[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8): 2728‑2738. (in Chinese) [百度学术]
ZHENG Y X, LIU J Q, GUO P, et al. Fatigue characteristics of double damage reinforced prestressed hollow slab beams under freeze‑thaw cycle erosion[J]. Applied Sciences, 2021, 11(16): 7692. [百度学术]
WANG Y, FENG W K, WANG H J, et al. Rock bridge fracturing characteristics in granite induced by freeze‑thaw and uniaxial deformation revealed by AE monitoring and post‑test CT scanning[J]. Cold Regions Science and Technology, 2020, 177: 103115. [百度学术]
LEI B, LI W G, TANG Z, et al. Durability of recycled aggregate concrete under coupling mechanical loading and freeze‑thaw cycle in salt‑solution[J]. Construction and Building Materials, 2018, 163:840‑849. [百度学术]
周大卫, 刘娟红, 段品佳, 等. 混凝土超低温冻融循环损伤演化规律和机理[J]. 建筑材料学报, 2022, 25(5):490‑497. [百度学术]
ZHOU Dawei, LIU Juanhong, DUAN Pinjia, et al. The damage evolution law and mechanism of concrete ultra‑low temperature freeze‑thaw cycles[J]. Journal of Building Materials, 2022, 25(5):490‑497. (in Chinese) [百度学术]
LI Z, LIU L L, YAN S H, et al. Effect of freeze‑thaw cycles on mechanical and porosity properties of recycled construction waste mixtures[J]. Construction and Building Materials, 2019, 210:347‑363. [百度学术]
吴倩云, 马芹永. 冻融循环作用下BSFC的抗冻性及损伤模型[J]. 建筑材料学报, 2021, 24(6):1169‑1178. [百度学术]
WU Qianyun, MA Qinyong. Frost resistance and damage model of BSFC under freeze‑thaw cycle[J]. Journal of Building Materials, 2021, 24(6):1169‑1178. (in Chinese) [百度学术]
刘海峰, 马映昌, 张润奇, 等. 冻融环境下沙漠砂对混凝土轴心受压力学性能的影响[J]. 哈尔滨工业大学学报, 2021, 53(3):101‑109, 117. [百度学术]
LIU Haifeng, MA Yingchang, ZHANG Runqi, et al. Influence of desert sand on the pressure properties of concrete axis under freeze‑thaw environment[J]. Journal of Harbin Institute of Technology, 2021, 53(3):101‑109, 117. (in Chinese) [百度学术]
张卫东, 董云, 彭宁波, 等. 冻融循环下透水再生混凝土力学性能损伤分析[J]. 建筑材料学报, 2020, 23(2):292‑296. [百度学术]
ZHANG Weidong, DONG Yun, PENG Ningbo, et al. Damage analysis of mechanical properties of pervious recycled concrete under freeze‑thaw cycle[J]. Journal of Building Materials, 2020, 23(2):292‑296. (in Chinese) [百度学术]
牛建刚, 左付亮, 王佳雷, 等. 塑钢纤维轻骨料混凝土的冻融损伤模型[J]. 建筑材料学报, 2018, 21(2):235‑240. [百度学术]
NIU Jiangang, ZUO Fuliang, WANG Jialei, et al. Freeze‑thaw damage model of plastic steel fiber light weight aggregate concrete[J]. Journal of Building Materials, 2018, 21(2):235‑240. (in Chinese) [百度学术]
姜磊, 牛荻涛. 硫酸盐与冻融环境下混凝土本构关系研究[J]. 四川大学学报(工程科学版), 2016, 48(3):71‑78. [百度学术]
JIANG Lei, NIU Ditao. Research on the constitutive relationship between sulfate and concrete under freeze‑thaw environment[J]. Journal of Sichuan University(Engineering Science), 2016, 48(3):71‑78. (in Chinese) [百度学术]
LI Y L, GUO H Y, ZHOU H, et al. Damage characteristics and constitutive model of concrete under uniaxial compression after freeze‑thaw damage[J]. Construction and Building Materials, 2022, 345:128171. [百度学术]
徐善华, 王友德, 李安邦, 等. 冻融损伤混凝土重复受压本构关系[J]. 哈尔滨工业大学学报, 2015, 47(4):104‑110. [百度学术]
XU Shanhua, WANG Youde, LI Anbang, et al. Constitutive relationship of freeze‑thaw damaged concrete under repeated compression[J]. Journal of Harbin Institute of Technology, 2015, 47(4):104‑110. (in Chinese) [百度学术]
龙广成, 刘赫, 马昆林, 等. 考虑冻融作用的混凝土单轴压缩损伤本构模型[J]. 中南大学学报(自然科学版), 2018, 49(8):1884‑1892. [百度学术]
LONG Guangcheng, LIU He, MA Kunlin, et al. Constitutive model of concrete uniaxial compression damage considering freeze‑thaw effect[J]. Journal of Central South University (Natural Science), 2018, 49(8):1884‑1892. (in Chinese) [百度学术]
DUAN A, JIN W L, QIAN J R. Effect of freeze‑thaw cycles on the stress‑strain curves of unconfined and confined concrete[J]. Materials and Structures, 2011, 44(7):1309‑1324. [百度学术]
DUAN A, TIAN Y, DAI J G, et al. A stochastic damage model for evaluating the internal deterioration of concrete due to freeze‑thaw action[J]. Materials and Structures, 2014, 47(6):1025‑1039. [百度学术]
关虓, 牛荻涛, 王家滨, 等. 基于Weibull强度理论的混凝土冻融损伤本构模型研究[J]. 混凝土, 2015(5):5‑9, 13. [百度学术]
GUAN Xiao, NIU Ditao, WANG Jiabin, et al. Research on the freeze‑thaw damage constitutive model of concrete based on Weibull strength theory[J]. Concrete, 2015(5):5‑9, 13. (in Chinese) [百度学术]
QIU J S, ZHOU Y X, VATIN N, et al. Damage constitutive model of coal gangue concrete under freeze‑thaw cycles[J]. Construction and Building Materials, 2020, 264:120720. [百度学术]
QI W L, TENG F, PAN S S. Damage constitutive model of concrete under repeated load after seawater freeze‑thaw cycles[J]. Construction and Building Materials, 2020, 236:117560. [百度学术]
黄灵芝, 柯梅尉, 司政, 等. 冻融损伤混凝土单轴压缩细观破坏研究[J]. 应用力学学报, 2021, 38(4):1400‑1407. [百度学术]
HUANG Lingzhi, KE Meiwei, SI Zheng, et al. Study on the mesoscopic failure of freeze‑thaw damaged concrete under uniaxial compression[J]. Chinese Journal of Applied Mechanics, 2021, 38(4):1400‑1407. (in Chinese) [百度学术]
LEMAITRE J. How to use damage mechanics[J]. Nuclear Engineering and Design, 1984, 80(2):233‑245. [百度学术]
KHAN M S, KING R. Transmuted modified Weibull distribution:A generalization of the modified Weibull probability distribution[J]. European Journal of Pure and Applied Mathematics, 2013, 6(1):66‑88. [百度学术]