摘要
以混凝土中离子传输性能的预测为例,基于微观到宏观的代表体积单元,分析了多尺度非均质性对传输性能预测的影响,建立了混凝土多尺度传输性能预测模型.相较于传统多尺度模型,本模型在微观尺度上考虑了随水泥水化程度变化的物质组成与净浆层级离子扩散系数的关系,在细观和宏观尺度上分析了粗细骨料界面过渡区、不规则骨料形状和多离子耦合效应对混凝土层级传输性能的影响.选取氯离子扩散系数、侵蚀深度为验证指标,通过对比各尺度下的模型预测值和试验值,验证了多尺度模型的可靠性.基于此模型,各尺度下的物质传输规律可得到深入探讨和高效印证.本研究也为离子、水分、气体等物质在混凝土中的传输性能预测提供了一个新的多尺度研究框架.
离子、水分等物质在混凝土中的传输性能预测一直是耐久性领域的研究重
多尺度模型能够平衡计算效率和孔隙结构表征精度两方面的需求,目前已被广泛应用于混凝土材料弹性模量、传热性能等方面的预
考虑到混凝土在各尺度上的非均质性,本文提出了一种新的混凝土传输性能多尺度预测模型.以离子传输预测为例,模型将混凝土视为非均质体,基于选定的代表性体积单元,分别从微观、细观、宏观尺度分析了不同物质组成对表观离子扩散系数、离子侵蚀深度的影响.在微观和细观尺度,模型通过均质化方法在不同层级间传递非均质特性;在宏观尺度,在充分考虑粗骨料不规则形状和多离子耦合效应影响的基础上,采用数值方法描述离子在混凝土中的传输过程并分析其传输特性;最后,利用第三方试验数据对各尺度的预测结果进行了验证和分析.本文所提模型能够较为完整地考虑从微观到宏观的非均质性所带来的影响,为复杂环境下混凝土的传输性能预测提供一种新的研究方法.
在代表性体积单元(REVs)的选取中,传统模型常将混凝土视作均质体或由粗骨料、粗骨料-浆体界面过渡区(ITZs)和水泥砂浆构成的三相复合体,其中水泥砂浆被简化为均质基底,而不区分浆体内各类水化产物.但研究表

图1 混凝土内部组分非均质性的多尺度分析
Fig.1 Multi‑scale analysis of the heterogeneous characteristic in concrete
此尺度下混凝土被视为由不规则粗骨料、粗骨料-砂浆界面过渡区和砂浆组成的三相复合
在细观尺度下,砂浆可类似地视为一种由细砂、细砂-水泥浆体界面过渡区和水泥浆体组成的三相非均质体,由于细砂粒径较小,可简化为球体.细观尺度预测的砂浆传输性能是宏观尺度预测的输入参数.
在微观尺度下,水化过程将影响不同水化产物的体积分数.水泥浆体包含大毛细孔(LCPs),微观尺度水化晶体(MCs,包含氢氧化钙晶体CH和钙矾石晶体AF),C‑S‑H凝胶和未水化完全的水泥颗粒(AC).其中,C‑S‑H凝胶在层级Ⅱ可基于不同的密度细分为高密度水化硅酸钙(HDCSH)凝胶和低密度水化硅酸钙(LDCSH)凝胶.
LDCSH凝胶附着在未水化颗粒和HDCSH的外层,在层级Ⅱ包含小毛细孔(SCPs)和纳观尺度水化晶体(NCs),在层级Ⅰ由疏松的C‑S‑H晶体和纳米孔组成. HDCSH凝胶则凝集附着在水化产物内层,结构致密,在层级Ⅰ由密实的C‑S‑H晶体和纳米孔组成.
基于前文建立的多尺度框架,本节将以混凝土中离子传输性能的预测为例构建一种结合解析和数值方法的预测模型.首先,基于水化过程分析,模型将采用解析方法计算不同尺度各物质组分的体积分数并作为多尺度框架的输入参数;其次,模型将通过均质化方法在不同层级间传递非均质特性参数.在宏观层级,结合细观尺度传递的参数,数值方法将被用于预测离子的表观传输性能并分析骨料形状、多离子耦合效应对离子侵蚀过程的影
在微观尺度上,水泥浆体中水化产物体积分数将随水化过程变化.在某一水化程度下,未水化水泥颗粒、固态水化产物和毛细孔的体积分数可基于Power提出的水化模型来计
对于LDCSH凝胶和HDCSH凝胶,如
![]() | (1) |
![]() | (2) |
式中:、分别为LDCSH、HDCSH凝胶中C‑S‑H晶体和凝胶孔的体积分数.
对于C‑S‑H凝胶而言,LDCSH和HDCSH密度的不同来源于凝胶孔体积的差异.据试
![]() | (3) |
![]() | (4) |
![]() | (5) |
式中:为水泥水化程度;mW/mC为水灰比.
由于干燥状态下的LDCSH凝胶质量和C‑S‑H凝胶质量仅由其中C‑S‑H晶体质量决定,同时密实的C‑S‑H晶体具有相同密度,为LDCSH中C‑S‑H晶体占总C‑S‑H晶体的体积分数,因此式(5)可表示为:
![]() | (6) |
结合式(1)~(6)可以推导出LDCSH和HDCSH的体积分数:
(7) |
(8) |
因为大、小毛细孔和微观、纳观尺度水化晶体都附着在未水化颗粒的外层,并夹杂于LDCSH中,所以水泥浆体物质组分计算时不区分大小毛细孔以及微纳观水化晶体,仅分别计算毛细孔和水化晶体整体体积分数.
在细观尺度上,细骨料(砂)的掺入将带来更高传输性能的砂-水泥净浆界面过渡区AITZ,为分析其对传输性能的影响,模型将细骨料(砂)简化为半径为的球体,厚度为的AITZ均匀包裹在骨料周围.当在体积为的普通混凝土中掺入连续级配为、体积分数为的骨料时,总的砂-水泥净浆界面过渡区的体积分数可利用解析方法计算,推导过程可参考文献[
(9) |
在宏观尺度上,相较于孔隙结构,骨料可视为不可渗透的组分,但离子传输会受到不规则粗骨料的阻碍,且相较于单一离子传输过程,多离子在混凝土中共同传输时会相互影响.因此,为考虑粗骨料形状和多离子耦合效应对离子传输预测模型的影响,将采用数值方法来分析多离子在含有不规则粗骨料混凝土中的传输过程,这将在下文具体介绍.
多尺度模型中,非均质性在不同尺度间的传递需通过均质化方法完成,例如:Mori‑Tanaka(MT)方法、复合球体法和自洽法(SC
(10) |
式中:Di为第i种交杂的离子扩散系数;分别代表第j种夹杂的离子扩散系数和体积分数.其中体积分数特指归一化的体积分数,即.
若第j种物质的体积分数不断提高,当物质j不能再被认为夹杂于i中(即没有哪一种物质可以包含其他所有物质)时,则必须要考虑不同组分间的相互作用,此情形需用自洽法进行模
(11) |
在微观尺度(水泥净浆尺度,层级Ⅰ~Ⅲ)上,水化产物为均匀附着在未水化水泥颗粒表面的球壳,如

图2 净浆均质化过程示意图
Fig.2 Homogenization process of bulk cement paste
而随着水化反应的进行,LDCSH逐渐形成连通的整体,此时LDCSH和HDCSH凝胶为附着在未水化颗粒内外两层的球壳,见

图3 复合球体模型示意图
Fig.3 Description of multi‑coated composite sphere
(12) |
式中:为有n+1层的复合球体的等效离子扩散系数;为第n层的离子扩散系数;为第i层的球壳在复合球体中的体积分数.
在细观尺度上,细骨料可简化为球体,细骨料-水泥净浆界面过渡区均匀地包裹在骨料表面,形成两层复合球体.砂浆均质化过程如

图4 砂浆均质化过程示意图
Fig.4 Homogenization process of mortar scale
在宏观尺度上,多尺度模型将采用数值方法以全面分析多离子耦合效应(氯离子、钠离子、钾离子、氢氧根离子)、不规则粗骨料、粗骨料-砂浆界面过渡区和离子固化作用对离子侵蚀过程的影响.此时,离子在混凝土中的传输过程同时受到浓度梯度和多离子耦合导致的内部电场的驱
(13) |
式中:为第k种离子的浓度;为第k种离子在砂浆中的扩散系数;为第k种离子的电荷数;为理想气体常数,R=;F为范德华常数,F=;T为绝对温度,T=298.15 K;φ为由离子分布不均引起的混凝土内部电势,根据高斯公式,φ可以用
(14) |
式中:为真空介电常数,=;为水在298.15 K时的相对介电常数,.
氯离子的传输过程需同时考虑物理吸附和化学结合的影响,故对于氯离子,
(15) |
式中为固化氯离子浓度.固化氯离子浓度与自由氯离子浓度之间的关系可参照已有的诸多研究,如Langmuir方
为开展数值分析,本研究建立了由不规则粗骨料、粗骨料-砂浆界面过渡区和砂浆组成的三相混凝土有限元模型,如

图 5 混凝土层级有限元建模
Fig.5 Finite element model of concrete level
综上所述,基于建立的多尺度模型,可预测混凝土各尺度下的离子传输特性,也可分析水泥水化过程、细骨料、粗骨料以及多离子耦合效应对氯离子传输的重要影响.
在微观尺度上,
Phase | Capillary pore | Crystal hydrate | LDCSH | HDCSH |
---|---|---|---|---|
Chloride diffusivity/( | 0 |
通过2.2所述均质化方法,

图6 水泥净浆中氯离子扩散系数预测值与试验值对比
Fig.6 Comparation between predicted and experimental chloride diffusivity in bulk cement pastes
在细观尺度上,结合细砂粒径分布,基于计算的细骨料-水泥净浆界面过渡区体积,等效骨料以及水泥砂浆氯离子扩散系数可利用复合球体模型和MT方法预测.
[ | Deviation/% | ||||||
---|---|---|---|---|---|---|---|
0.35 | 0.69 | 0.59 | 0.614 8 | 2.50 | 1.87 | 1.93 | 3.31 |
0.32 | 0.63 | 0.65 | 0.708 1 | 2.34 | 1.61 | 1.67 | 3.64 |
0.40 | 0.81 | 0.62 | 0.661 0 | 4.56 | 3.28 | 3.22 | 1.80 |
0.40 | 0.80 | 0.55 | 0.555 3 | 4.95 | 3.86 | 3.86 | 0.12 |
0.40 | 0.81 | 0.69 | 0.771 4 | 4.56 | 2.91 | 2.91 | 0.09 |
0.60 | 0.98 | 0.53 | 0.526 5 | 12.90 | 10.24 | 10.68 | 4.15 |
0.40 | 0.81 | 0.62 | 0.661 0 | 4.56 | 3.28 | 3.05 | 7.47 |
在宏观尺度上,本研究利用数值方法分析了不同水灰比下含有不规则骨料混凝土的多离子传输性能(氯离子、钠离子、钾离子和氢氧根离子).模型的边界和初始条件如
Index | Chloride | Sodium | Potassium | Hydroxyl |
---|---|---|---|---|
Charge number | -1 | 1 | 1 | -1 |
Boundary condition(surface) | 500 | 500 | 0 | 0 |
Initial concentration/(mol· | 0 | 100 | 200 | 300 |
Diffusivity in free water×1 | 2.03 | 1.33 | 1.96 | 5.27 |

图7 混凝土中氯离子侵蚀深度预测值与试验值对比
Fig.7 Comparison between predicted and experimental chloride penetration depth in concretes
由
水泥浆体的离子扩散系数与水泥浆体中各物质组分体积分数及其相互夹杂情况相关,而水泥浆体中物质组分体积分数又受到水灰比和水化程度的影响.

图8 水灰比和水化程度对水泥浆体中物质组分体积分数的影响
Fig.8 Influence of water‑cement ratio and hydration degree on volume fraction of different hydration products
由
不同水灰比下,模型预测的混凝土中氯离子侵蚀深度随时间的变化如

图9 不同水灰比下考虑和不考虑多离子耦合效应时混凝土中氯离子侵蚀深度的预测值
Fig.9 Predicted chloride penetration depth under different water‑cement ratios with and without multi‑species ions effect
此外,

图10 混凝土内部电势的分布
Fig.10 Distribution of electrostatic potential in concrete
(1)基于多尺度的均质化参数传递理论,本文提出的预测模型逐级分析了微观和细观尺度上非均质性对宏观尺度上离子表观扩散性能的影响,可较为准确地预测水泥净浆、砂浆的氯离子扩散系数和混凝土中的氯离子侵蚀深度.
(2)在水泥浆体层级,当水灰比较低时,水化过程会在没有剩余水化空间时结束,而水灰比较高时,水化过程会持续到所有未水化颗粒反应完全为止.微观水化产物体积分数会显著影响氯离子在水泥浆体中的扩散系数,水化程度相同时在较低的水灰比下可得到更密实的结构,即HDCSH体积分数更高、毛细孔体积分数更低,导致氯离子扩散系数较低.
(3)在混凝土层级上,通过输入预测的水泥砂浆离子扩散系数,不同水灰比下混凝土中离子的侵蚀深度可被准确预测.结果表明忽略多离子耦合效应将会低估氯离子侵蚀深度.
参考文献
张成琳, 刘清风. 钢筋混凝土中氯盐和硫酸盐耦合侵蚀研究进展[J]. 材料导报, 2022, 36(1):69‑77. [百度学术]
ZHANG Chenglin, LIU Qingfeng. Coupling erosion of chlorides and sulfates in reinforced concrete:A review[J]. Materials Reports, 2022, 36(1):69‑77. (in Chinese) [百度学术]
姜文镪, 刘清风. 冻融循环下混凝土中氯离子传输研究进展[J]. 硅酸盐学报, 2020, 48(2):258‑272. [百度学术]
JIANG Wenqiang, LIU Qingfeng. Chloride transport in concrete subjected to freeze‑thaw cycles — A short review[J]. Journal of the Chinese Ceramic Society, 2020, 48(2):258‑272. (in Chinese) [百度学术]
ASHRAF M, IQBAL M F, RAUF M, et al. Developing a sustainable concrete incorporating bentonite clay and silica fume:Mechanical and durability performance[J]. Journal of Cleaner Production, 2022, 337:130315. [百度学术]
MENG Z Z, LIU Q F, XIA J, et al. Mechanical‑transport‑chemical modeling of electrochemical repair methods for corrosion‑induced cracking in marine concrete[J]. Computer‑Aided Civil and Infrastructure Engineering, 2022, 37(14):1854‑1874. [百度学术]
蔡栋兴,毕文彦,管学茂.粗骨料对混凝土氯离子扩散影响的模拟与试验[J].建筑材料学报,2023,26(4):383‑388. [百度学术]
CAI Dongxing, BI Wenyan, GUAN Xuemao. Simulation and experiments of the effect of coarse aggregates on the diffusion of chloride ions in concrete[J]. Journal of Building Materials, 2023, 26(4):383‑388. (in Chinese) [百度学术]
LIU Q F, SHEN X H, ŠAVIJA B, et al. Numerical study of interactive ingress of calcium leaching, chloride transport and multi‑ions coupling in concrete[J]. Cement and Concrete Research, 2023, 165:107072. [百度学术]
周双喜, 韩震, 魏星, 等. 骨料含量和界面区体积对混凝土氯离子扩散性能的影响[J]. 建筑材料学报, 2018, 21(3):351‑357. [百度学术]
ZHOU Shuangxi, HAN Zhen, WEI Xing, et al. Influence of aggregate contents and volume of interfacial transition zone on chloride ion diffusion properties of concrete[J]. Journal of Building Materials, 2018, 21(3):351‑357. (in Chinese) [百度学术]
CAI Y X, LIU Q F, MENG Z Z, et al. Influence of coarse aggregate settlement induced by vibration on long‑term chloride transport in concrete:A numerical study[J]. Materials and Structures, 2022, 55(9):235. [百度学术]
刘嘉涵, 徐世烺, 曾强. 基于多尺度细观力学方法计算水泥基材料的导热系数[J]. 建筑材料学报, 2018, 21(2):293‑298. [百度学术]
LIU Jiahan, XU Shilang, ZENG Qiang. An inverstigation of thermal conductivity of cement‑based composites with multi‑scale microschemical method[J]. Journal of Building Materials, 2018, 21(2):293‑298. (in Chinese) [百度学术]
ACHOUR M, BIGNONNET F, BARTHÉLÉMY J F, et al. Multi‑scale modeling of the chloride diffusivity and the elasticity of Portland cement paste[J]. Construction and Building Materials, 2020, 234:117‑124. [百度学术]
XIONG Q X, TONG L Y, ZHANG Z D, et al. A new analytical method to predict permeability properties of cementitious mortars:The impacts of pore structure evolutions and relative humidity variations[J]. Cement and Concrete Composites, 2023, 137, 104912. [百度学术]
SHAFIKHANI M, CHIDIAC S E. A holistic model for cement paste and concrete chloride diffusion coefficient[J]. Cement and Concrete Research, 2020, 133:106049. [百度学术]
SUN G W, ZHANG Y S, SUN W, et al. Multi‑scale prediction of the effective chloride diffusion coefficient of concrete[J]. Construction and Building Materials, 2011, 25(10):3820‑3831. [百度学术]
TONG L Y, QING X X, ZHANG M Z, et al. Multi‑scale modelling and statistical analysis of heterogeneous characteristics effect on chloride transport properties in concrete[J]. Construction and Building Materials, 2023, 367:130096. [百度学术]
BOURISSAI M, MEFTAH F, BRUSSELLE‑DUPEND N, et al. Evolution of the elastic properties of an oilwell cement paste at very early age under downhole conditions:Characterization and modelling[J]. Oil and Gas Science and Technology, 2013, 68(3):595‑612. [百度学术]
LEE Y, KIM J K. Numerical analysis of the early age behavior of concrete structures with a hydration based microplane model[J]. Computers and Structures, 2009, 87(17/18):1085‑1101. [百度学术]
ZHENG J J, ZHANG C Y, WU Y F, et al. Random‑walk algorithm for chloride diffusivity of concrete with aggregate shape effect[J]. Journal of Materials in Civil Engineering, 2016, 28(12):04016153. [百度学术]
童良玉, 刘清风. 考虑时变孔隙结构的非饱和混凝土扩散性能预测模型[J]. 硅酸盐学报, 2023, 51(8):1950‑1961. [百度学术]
TONG Liangyu, LIU Qingfeng. Prediction model for diffusivity of unsaturated concrete by considering time‑varying pore structure[J]. Journal of the Chinese Ceramic Society, 2023, 51(8):1950‑1961. (in Chinese) [百度学术]
LIU Q F, HU Z, WANG X E, et al. Numerical study on cracking and its effect on chloride transport in concrete subjected to external load[J]. Construction and Building Materials, 2022, 325:126797. [百度学术]
LIU Q F, CAI Y X, PENG H, et al. A numerical study on chloride transport in alkali‑activated fly ash/slag concretes[J]. Cement and Concrete Research, 2023, 165:107049. [百度学术]
TONG L Y, XIONG Q X, ZHANG Z, et al. A novel lattice model to predict chloride diffusion coefficient of unsaturated cementitious materials based on multi‑typed pore structure characteristics[J]. Cement and Concrete Research, 2024, 175: 107351. [百度学术]
BERNARD O, ULM F J, LEMARCHAND E. A multiscale micromechanics‑hydration model for the early age elastic properties of cement‑based materials[J]. Cement and Concrete Research, 2003, 33(9):1293‑1309. [百度学术]
MA H Y, HOU D S, LU Y Y, et al. Two‑scale modeling of the capillary network in hydrated cement paste[J]. Construction and Building Materials, 2014, 64:11‑21. [百度学术]
VENKOVIC N, SORELLI L, SUDRET B, et al. Uncertainty propagation of a multiscale poromechanics‑hydration model for poroelastic properties of cement paste at early‑age[J]. Probabilistic Engineering Mechanics, 2013, 32:5‑20. [百度学术]
童良玉, 刘清风. 纤维增强混凝土氯离子扩散系数的多尺度预测模型[J]. 复合材料学报, 2022, 39(11):5181‑5191. [百度学术]
TONG Liangyu, LIU Qingfeng. Multi‑scale prediction model of chloride diffusivity of fiber reinforced concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(11):5181‑5191. (in Chinese) [百度学术]
ULM F J, CONSTANTINIDES G. The nanogranular nature of C‑S‑H[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(1):64‑90. [百度学术]
TENNIS P D, JENNINGS H M. A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes[J]. Cement and Concrete Research, 2000, 30(6):855‑863. [百度学术]
OŽBOLT J, ORŠANIĆ F, BALABANIĆ G, et al. Modeling damage in concrete caused by corrosion of reinforcement:Coupled 3D FE model[J]. International Journal of Fracture, 2012, 178(1/2):233‑244. [百度学术]
TIMOTHY J J, MESCHKE G. Effective diffusivity of porous materials with microcracks:Self‑similar mean‑field homogenization and pixel finite element simulations[J]. Transport in Porous Media, 2018, 125(3):413‑434. [百度学术]
DRIDI W. Analysis of effective diffusivity of cement based materials by multi‑scale modelling[J]. Materials and Structures, 2012, 46(1/2):313‑326. [百度学术]
LU P. Further studies on Mori‑Tanaka models for thermal expansion coefficients of composites[J]. Polymer, 2013, 54(6):1691‑1699. [百度学术]
HU J, STROEVEN P. Depercolation threshold of porosity in model cement:Approach by morphological evolution during hydration[J]. Cement and Concrete Composites, 2005, 27(1):19‑25. [百度学术]
贾立哲, 张英姿, 王开源, 等, 非饱和混凝土中氯离子传输机理[J]. 建筑材料学报, 2016, 19(1):45‑52. [百度学术]
JIA Lizhe, ZHANG Yingzi, WANG Kaiyuan, et al. Transport mechanism of chloride in nonsaturated concrete[J]. Journal of Building Materials, 2016, 19(1):45‑52. (in Chinese) [百度学术]
刘建华, 陈磊, 吴绍明, 等. 阳离子类型对粉煤灰混凝土氯离子扩散性能的影响[J]. 硅酸盐通报, 2022, 41(6):1920‑1929. [百度学术]
YANG Jianhua, CHEN Lei, WU Shaoming, et al. Effect of cation type on chloride diffusion properties of fly ash concrete[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6):1920‑1929. (in Chinese) [百度学术]
TANG L P, NILSSON L O. Chloride binding capacity and binding isotherms of OPC pastes and mortars[J]. Cement and Concrete Research, 1993, 23(2):247‑253. [百度学术]
万小梅, 韩笑, 于琦, 等. 碱激发矿渣净浆对氯离子的固化作用[J]. 建筑材料学报, 2021, 24(5):952‑960. [百度学术]
WAN Xiaomei, HAN Xiao, YU Qi, et al. Solidification of chloride ions in alkali‑activated slag paste[J]. Journal of Building Materials, 2021, 24(5):952‑960. (in Chinese) [百度学术]
NGALA V T, PAGE C L, PARROTT L J, et al. Diffusion in cementitious materials:II. Further investigations of chloride and oxygen diffusion in well‑cured OPC and OPC/30%PFA pastes[J]. Cement and Concrete Research, 1995, 25(4):819‑826. [百度学术]
NGALA V T, PAGE C L. Effects of carbonation on pore structure and diffusional properties of hydrated cement paste[J]. Cement and Concrete Research, 1997, 27(7):995‑1007. [百度学术]
MACDONALD K A, NORTHWOOD D O. Experimental measurements of chloride ion diffusion rates using a two‑compartment diffusion cell:Effects of material and test variables[J]. Cement and Concrete Research, 1995, 25(7):1407‑1416. [百度学术]
PRINCIGALLO A. Cálculo del transporte de cloruros en la pasta de cemento[J]. Materiales de Construcción, 2012, 62(306):151‑161. [百度学术]
CHEN X D, YU A P, LIU G Y, et al. A multi‑phase mesoscopic simulation model for the diffusion of chloride in concrete under freeze‑thaw cycles[J]. Construction and Building Materials, 2020, 265:120223. [百度学术]
DE S K, MUKHERJEE A. A multiscale model including the effect of pores, aggregates and their interfaces for moisture diffusion in concrete[J]. Cement and Concrete Composites, 2020, 111:103595. [百度学术]
SONG Z J, JIANG L H, CHU H Q, et al. Modeling of chloride diffusion in concrete immersed in CaCl2 and NaCl solutions with account of multi‑phase reactions and ionic interactions[J]. Construction and Building Materials, 2014, 66:1‑9. [百度学术]
JIANG W Q, SHEN X H, XIA J, et al. A numerical study on chloride diffusion in freeze‑thaw affected concrete[J]. Construction and Building Materials, 2018, 179:553‑565. [百度学术]
YANG C C, CHO S W, WANG L C. The relationship between pore structure and chloride diffusivity from ponding test in cement‑based materials[J]. Materials Chemistry and Physics, 2006, 100(2/3):203‑210. [百度学术]