摘要
研究了丁苯(SBR)乳液掺量对硫铝酸盐水泥流变性能、水化放热及水化产物的影响.结果表明,当SBR乳液掺量超过20%时,硫铝酸盐水泥净浆的固含量增大,聚合物加速聚集黏附,增加了净浆的屈服应力和塑性黏度,缩短了净浆的凝结时间并增大了浆体的水化放热,钙矾石随着SBR乳液掺量的增大逐渐增多,促进了硫铝酸盐水泥的早期水化进程.
硫铝酸盐水泥(SAC)具有快硬、早强等优点,已经被广泛应用于桥梁、道路等抢修工程之
既有研究和工程应用主要关注SBR乳液掺量不超过20%的改性硫铝酸盐水泥.SBR乳液之所以能够提高硫铝酸盐水泥的韧性和耐久性,一般认为是聚合物颗粒破乳后形成了三维网状聚合物薄膜,改善了水泥基材料的脆性和界面微结
鉴于此,本文系统研究了SBR乳液掺量(质量分数,文中涉及的含量、掺量、组成、水灰比等除特别说明外均为质量分数或质量比)对硫铝酸盐水泥流变性能、水化放热与水化产物等早期性能的影响,并结合热重(DTG)和X射线衍射(XRD)测试半定量分析了水化产物的含量变化,研究成果可以为高掺量SBR乳液改性硫铝酸盐水泥的应用提供参考.
水泥采用郑州建文科技有限公司产的硫铝酸盐水泥,其化学组成和矿物组成分别如表
CaO | SO3 | Al2O3 | SiO2 | MgO | Fe2O3 | TiO2 | K2O |
---|---|---|---|---|---|---|---|
44.44 | 18.07 | 15.06 | 8.74 | 2.27 | 1.66 | 0.67 | 0.61 |
C4A3S | C2S | CaSO4 | Calcite | Dolomite |
---|---|---|---|---|
24.2 | 26.9 | 25.3 | 12.2 | 8.1 |

图1 SBR分子的FTIR图谱
Fig.1 FTIR spectrum of SBR molecule
硫铝酸盐水泥和SBR聚合物颗粒的粒径分布见

图2 硫铝酸盐水泥和SBR颗粒的粒径分布
Fig.2 Particle size distributions of SAC and SBR
为研究高掺量SBR乳液对硫铝酸盐水泥流变性能、早期水化放热和水化产物的影响,试验控制水灰比(mW/mC)恒定为0.5,SBR乳液掺量从0%到50%,设置6组样品,具体配合比如
Specimen | w(SBR latex)/% | Mix proportion/g | mW/mC | |||
---|---|---|---|---|---|---|
Water | SAC | SBR latex | Defoaming agent | |||
SBR‑0 | 0 | 250.0 | 500.0 | 0 | 0.5 | 0.5 |
SBR‑10 | 10 | 200.0 | 500.0 | 100.0 | 0.5 | 0.5 |
SBR‑20 | 20 | 150.0 | 500.0 | 200.0 | 0.5 | 0.5 |
SBR‑30 | 30 | 100.0 | 500.0 | 300.0 | 0.5 | 0.5 |
SBR‑40 | 40 | 50.0 | 500.0 | 400.0 | 0.5 | 0.5 |
SBR‑50 | 50 | 0 | 500.0 | 500.0 | 0.5 | 0.5 |
水泥净浆的搅拌采用符合JC/T 729—2005《水泥净浆搅拌机》的水泥净浆搅拌机.在搅拌锅中依次加入称量好的水与乳液,低速搅拌1 min后加入粉体材料(水泥+外加剂).混合程序为:低速搅拌1.0 min后静置30 s(过程中快速将叶片和锅壁的胶砂刮入锅中),然后再快速搅拌2.0 min,最后低速搅拌1.0 min.
(1)流变测试:水泥净浆流变测试使用Rheolab QC型流变仪,扭矩和剪切应力的转换系数为1 887 876 Pa/(m·Nm),剪切速率和速度的转换系数为0.497 1

图3 水泥净浆流变测试
Fig.3 Rheological shear test of cement paste
(2)凝结和水化测试:采用GL‑AWK型自动维卡仪测定SBR乳液改性硫铝酸盐水泥净浆的初凝和终凝时间;量热试验使用TAM Air型八通道等温量热仪,严格控制环境温度为20 ℃.统一不同掺量SBR乳液改性硫铝酸盐水泥净浆的比热,计算得出用于测试的混合物质量分别为5.19、5.50、5.80、6.10、6.40、6.69 g,对应SBR乳液掺量从低到高的6个梯度.
(3)物相组成测试:将水化12.5、30.0 min后的样品浸泡于异丙醇中混合研磨10.0 min,并用抽滤器(孔径2.5 μm)对其进行抽滤处理,抽滤后的粉体置于真空干燥箱烘干保存.采用Mettler‑Toledo TGA2型TGA和Bruker D8‑Advance型XRD测试粉体的物相组成,并采用DTG曲线计算净浆中物相的质量变化以及采用Highscore Plus软件进行半定量分析.
(4)形貌测试:将水化5.0 min后的SBR乳液改性硫铝酸盐水泥样品在异丙醇中超声分散10.0 min,抽滤后放入真空干燥箱中干燥3 d.采用日本JSM‑IT500型扫描电镜(SEM)在20 kV加速电压下对喷金后的样品进行测试.
不同掺量SBR乳液改性硫铝酸盐水泥净浆在12.5 min的流变曲线如

图4 不同测试组的流变曲线和流变参数
Fig.4 Rheological curves and parameters of different test groups
低掺量SBR乳液能够降低水泥的屈服应力和塑性黏度,可以归因为乳胶颗粒在水泥净浆中的滚珠作
SBR乳液改性硫铝酸盐水泥净浆的初凝、终凝时间如
Specimen | Setting time/min | Specimen | Setting time/min | ||
---|---|---|---|---|---|
Initial | Final | Initial | Final | ||
SBR‑0 | 21 | 26 | SBR‑30 | 21 | 28 |
SBR‑10 | 28 | 49 | SBR‑40 | 20 | 26 |
SBR‑20 | 25 | 43 | SBR‑50 | 20 | 30 |
为深入解释高掺量SBR乳液缩短硫铝酸盐水泥的凝结时间,进一步利用量热测试分析体系水化放热速率和总放热量,结果如

图5 不同测试组的水化曲线
Fig.5 Hydration curves of different test groups
(1)SBR乳液的加入未改变水化放热速率曲线的典型特征,但降低了水泥净浆早期的放热速率,且随着SBR乳液掺量的增加,作用效果更加明显.当SBR乳液掺量超过30%时,水泥净浆的水化放热速率开始上升.
(2)水化总放热量也呈现出同样的趋势.随着SBR乳液掺量的持续增加,水泥净浆在相同时间内的总放热量先降低后增加.结果表明,SBR乳液对硫铝酸盐水泥具有缓凝作用,其效果存在一个临界值,较低掺量的SBR乳液能促进硫铝酸盐水泥的早期水化.
进一步使用水化动力学模型(边界成核BNG模型)进行分析,结果如
Specimen | KG/ | KN×1 | |
---|---|---|---|
SBR‑0 | 0.506 9 | 4.356 7 | 0.996 |
SBR‑10 | 0.492 1 | 3.456 8 | 0.995 |
SBR‑20 | 0.463 8 | 1.231 6 | 0.994 |
SBR‑30 | 0.470 2 | 1.489 7 | 0.995 |
SBR‑40 | 0.513 3 | 2.356 2 | 0.993 |
SBR‑50 | 0.532 8 | 2.856 1 | 0.991 |
为研究SBR乳液掺量对改性硫铝酸盐水泥物相组成的影响,测试了SBR乳液改性硫铝酸盐水泥在水化12.5、30.0 min时的DTG曲线,结果如

图6 不同样品的DTG曲线
Fig.6 DTG curves of different specimens
研究发现,C2S浆体水化18 h后生成的CH含量小于1
Specimen | 12.5 min | 30.0 min | Specimen | 12.5 min | 30.0 min | ||||
---|---|---|---|---|---|---|---|---|---|
SBR | AFt | SBR | AFt | SBR | AFt | SBR | AFt | ||
SBR‑0 | 0 | 1.526 | 0 | 5.276 | SBR‑30 | 21.348 | 1.695 | 20.710 | 5.241 |
SBR‑10 | 7.937 | 1.662 | 8.456 | 5.407 | SBR‑40 | 26.255 | 1.951 | 25.056 | 6.186 |
SBR‑20 | 15.021 | 1.630 | 15.011 | 4.524 | SBR‑50 | 30.712 | 2.451 | 28.461 | 7.238 |
进一步使用XRD对改性硫铝酸盐水泥的物相进行分析,结果如

图7 不同测试组XRD谱
Fig.7 XRD patterns of different test groups
采用HighScore Plus软件对XRD图谱进行半定量计算分析,结果如

图8 不同测试组矿物的半定量含量
Fig.8 Semi‑quantitative contents of minerals in different test groups
在硫铝酸盐‑SBR乳液体系中,当SBR乳液掺量不超过20%时,虽然C2S溶解,CH含量提高,但生成的CH并未充分与无水硫铝酸钙继续反应生成AFt,这可能是硫铝酸盐水泥凝结时间延长的原因.当SBR乳液掺量不低于30%时,C2S进一步溶解,反应生成的CH含量逐渐降低且AFt含量进一步提升,这表明生成的CH充分与无水硫铝酸钙发生了反应.因此,相对于低掺量SBR乳液(不超过20%),高掺量SBR乳液能够一定程度上促进硫铝酸盐水泥的水化反应进程.
用SEM对不同SBR乳液掺量的硫铝酸盐水泥早期样品的形貌进行表征,结果如

图9 不同测试组5.0 min水合物的扫描电镜结果
Fig.9 SEM results of hydrates in different test groups at 5.0 min
此外,在整个样品中观察到元素的不均匀分布.在叉点处使用能谱扫描,发现Pt元素的峰强在不同样品中皆较高,系样品表面喷金所致,消除Pt元素影响后的元素含量如
Specimen | C | O | Al | Si | S | Ca |
---|---|---|---|---|---|---|
SBR‑0 | 30.52 | 24.15 | 1.77 | 2.79 | 29.33 | |
SBR‑20 | 40.61 | 24.95 | 11.96 | 1.20 | 2.17 | 16.29 |
SBR‑50 | 44.14 | 10.88 | 5.79 | 3.78 | 2.57 | 30.67 |
(1)添加了SBR乳液的硫铝酸盐水泥样品的C含量显著高于SBR‑0.当SBR乳液为50%时,C含量为44.14%;当SBR乳液为20%时,C含量为40.61%,表明叉点处为SBR乳液脱水并胶结后形成的乳胶,同时证实了SBR聚合物对硫铝酸盐水泥颗粒的覆盖包裹作用.
(2)此外,与SBR乳液掺量为20%时相比,SBR乳液掺量为50%时的O元素含量降低,Ca元素含量升高.这可能是由于表层的聚合物胶结物厚度增加,SBR聚合物分子不含O元素,因此O元素含量相对较低.同时,电子束打穿在Ca含量大的矿物或水化产物上,因此C、Ca元素含量升高.
由前文可知,SBR乳液改性硫铝酸盐水泥的早期性能与SBR乳液掺量密切相关.本文采用的SBR乳液固含量为50%,和文献报道使用的聚合物乳液固含量类
(1)当SBR乳液掺量不超过20%时,乳胶颗粒的滚珠作用为主导,能够降低水泥净浆的屈服应力和塑性黏度.随着SBR乳液掺量的进一步升高,相同体积水泥净浆的固含量增大,摩擦阻力增加,聚合物聚集黏附,水泥净浆的屈服应力和塑性黏度提高.
(2)SBR乳液对硫铝酸盐水泥具有缓凝作用,但效果受SBR乳液掺量的影响显著.相较于低掺量,高掺量SBR乳液促进了硫铝酸盐水泥水化的动力学过程.当SBR乳液掺量大于20%时,硫铝酸盐水泥净浆的凝结时间逐渐趋近空白组,并且硫铝酸盐水泥的水化放热速率和总放热逐渐增大.
(3)当硫铝酸盐水泥的水化时间从12.5 min增加到30.0 min时,钙矾石的含量显著增加.当SBR乳液掺量大于20%时,Ca(OH)2充分参与反应,钙矾石的含量随着SBR乳液掺量的增大逐渐升高.
参考文献
ZENG Z P, YE M X, WANG W D, et al. Analysis on mechanical characteristics of CRTSII slab ballastless track structures in rectification considering material brittleness[J]. Construction and Building Materials, 2022, 319: 126058. [百度学术]
廖宜顺, 王思纯, 廖国胜, 等. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9):1‑14. [百度学术]
LIAO Yishun, WANG Sichun, LIAO Guosheng, et al. Effect of sodium gluconate on hydration process of calcium sulphoaluminate cement[J]. Materials Review, 2023, 37(9):1‑14. (in Chinese) [百度学术]
王茹, 张韬, 不同温湿度下丁苯乳液/硫铝酸盐水泥砂浆的干缩率[J]. 建筑材料学报, 2018, 21(5):768‑774. [百度学术]
WANG Ru, ZHANG Tao. Dry shrinkage rate of styrene‑butadiene copolymer dispersion/calcium sulphoaluminate cement mortar under different curing temperature and humidity[J]. Journal of Building Materials, 2018, 21(5):768‑774. (in Chinese) [百度学术]
STARR J, SOLIMAN E M, MATTEO E N, et al. Mechanical characterization of low modulus polymer‑modified calcium‑ [百度学术]
silicate‑hydrate (C‑S‑H) binder[J]. Cement and Concrete Composites, 2021, 124:104219. [百度学术]
SHI C, WANG P, MA C Y, et al. Effects of SAE and SBR on properties of rapid hardening repair mortar[J]. Journal of Building Engineering, 2020, 35(2):102000. [百度学术]
LI L, WANG R, LU Q Y. Influence of polymer latex on the setting time, mechanical properties and durability of calcium sulfoaluminate cement mortar[J]. Construction and Building Materials, 2018, 169:911‑922. [百度学术]
SUN K, WANG S P, ZENG L, et al. Effect of styrene‑butadiene rubber latex on the rheological behavior and pore structure of cement paste[J]. Composites Part B:Engineering, 2019, 163:282‑289. [百度学术]
ASSAAD J. Development and use of polymer‑modified cement for adhesive and repair applications[J]. Construction and Building Materials, 2018, 163:139‑148. [百度学术]
KIM H K, JEON J H, LEE H K. Workability, and mechanical, acoustic and thermal properties of lightweight aggregate concrete with a high volume of entrained air[J]. Construction and Building Materials, 2012, 29:193‑200. [百度学术]
YANG Z, SHI X, CREIGHTON A T, et al. Effect of styrene‑butadiene rubber latex on the chloride permeability and microstructure of Portland cement mortar[J]. Construction and Building Materials, 2009, 23(6):2283‑2290. [百度学术]
BAUEREGGER S, PERELLO M, PLANK J. Influence of carboxylated styrene‑butadiene latex copolymer on Portland cement hydration[J]. Cement and Concrete Composites, 2015, 63:42‑50. [百度学术]
BESSAIE‑BEY H, BAUMANN R, SCHMITZ M, et al. Effect of polyacrylamide on rheology of fresh cement pastes[J]. Cement and Concrete Research, 2015, 76:98‑106. [百度学术]
YAO H, FAN M H, HUANG T J, et al. Retardation and bridging effect of anionic polyacrylamide in cement paste and its relationship with early properties[J]. Construction and Building Materials, 2021, 306:124822. [百度学术]
YUAN Q, XIE Z L, YAO H, et al. Comparative study on the early properties of cement modified with different ionic polyacrylamides[J]. Construction and Building Materials, 2022, 339:127671. [百度学术]
HUANG T J, LI B Y, YUAN Q, et al. Rheological behavior of Portland clinker‑calcium sulphoaluminate clinker‑anhydrite ternary blend[J]. Cement and Concrete Composites, 2019, 104:103403. [百度学术]
JIAO D W, SHI C J, YUAN Q, et al. Effect of constituents on rheological properties of fresh concrete‑A review[J]. Cement and Concrete Composites, 2017, 83:146‑159. [百度学术]
王培铭,赵国荣,张国防. 聚合物水泥混凝土的微观结构的研究进展[J]. 硅酸盐学报, 2014, 42(5):653‑660. [百度学术]
WANG Peiming, ZHAO Guorong, ZHANG Guofang. Research progress on microstructure of polymer cement concrete[J]. Journal of the Chinese Ceramic Society, 2014, 42(5):653‑660. (in Chinese) [百度学术]
王茹,周袁宇,刘校荣,等. HPMC对硫铝酸钙水泥水化的影响[J]. 建筑材料学报, 2023, 26(5):538‑546. [百度学术]
WANG Ru, ZHOU Yuanyu, LIU Xiaorong, et al. Effect of HPMC on the hydration of calcium sulfoaluminate cement[J]. Journal of Building Engineering, 2023, 26(5):538‑546. (in Chinese) [百度学术]
徐玲琳,杨肯,穆帆远,等. 纤维素醚对硫铝酸盐水泥浆体水组 [百度学术]
分及水化产物演变的影响[J]. 材料导报, 2022, 36(10):53‑58. [百度学术]
XU Linglin, YANG Ken, MU Fanyuan, et al. Effect of cellulose ether on the water and hydration products evolution of calcium sulfoaluminate cement paste[J]. Materials Review, 2022, 36(10):53‑58. (in Chinese) [百度学术]
YUAN Q, XIE Z L, YAO H, et al. Hydration, mechanical properties, and microstructural characteristics of cement pastes with different ionic polyacrylamides:A comparative study[J]. Journal of Building Engineering, 2022, 56:104763. [百度学术]
季节,王颢翔,王琴,等. 改性废旧橡胶粉对水泥胶砂性能的影响[J]. 建筑材料学报, 2021, 24(4):679‑686. [百度学术]
JI Jie, WANG Haoxiang, WANG Qin, et al. Effect of modified rubber powder on performances of cement mortar[J]. Journal of Building Engineering, 2021, 24(4):679‑686. (in Chinese) [百度学术]