摘要
对钢-聚丙烯混杂纤维混凝土(HFRC)开展单轴等幅循环受压疲劳变形试验,以探究应力水平对HFRC疲劳破坏形态、疲劳应力-应变曲线、疲劳耗能能力以及极限疲劳变形的影响规律.结果表明:HFRC的疲劳破坏形态为剪切破坏,具有延性破坏特征;HFRC的疲劳累积耗能和极限疲劳变形随着应力水平的降低而增加;建立了考虑存活率的HFRC应力水平-极限疲劳变形方程,能够定量描述HFRC在任意疲劳荷载作用下的极限变形.
纤维混凝土作为新生代复合材料,已经逐步成为土木工程中应用广泛的材料之一.其中,钢-聚丙烯混杂纤维混凝土(HFRC)以其优异的综合性能备受关
近几十年来,国内外学者针对纤维混凝土的疲劳行为开展了系统的试验研究,取得了比较丰富的研究成
目前,关于HFRC的研究成果主要集中在弯曲疲劳性能方
参考课题组前期研究成
Cement | Sand | Gravel | Water | Water reducer |
---|---|---|---|---|
486.00 | 746.00 | 1 038.00 | 175.00 | 3.89 |
Type | Diameter/mm | Aspect ratio | Density/(g·c | Tensile strength/MPa |
---|---|---|---|---|
SF | 0.500 | 60 | 7.80 | Around 500 |
PPF | 0.048 | 167 | 0.91 | 400-450 |
将静载破坏视为应力水平(S)为1.0的疲劳破坏,为了研究HFRC在高周和低周疲劳工况下的性能,本文还设计3个应力水平(S为0.9、0.8、0.7).考虑到疲劳试验的离散性较大,每组制作6个平行试件,共24个HFRC棱柱体试件,其中6个为静载试验试件,18个为疲劳试验试件.浇筑试件时,同批次制作6个边长为150 mm的立方体试件.脱模后,将所有试件放置在(20±3) ℃、相对湿度95%的标准养护室内养护28 d.
HFRC的单轴循环受压疲劳试验在MTS‑311.41型2 500 kN电液伺服动态疲劳试验机上进行.数据采集由伺服控制器FlexTes
为了尽可能消除龄期对HFRC疲劳性能的影响,将所有棱柱体试件在室内环境中放置90 d后,在电液伺服动态疲劳试验机上进行单轴受压静载试验,采用位移控制,加载速率为0.005 mm/s,测得HFRC轴心抗压强度的平均值为50.62 MPa.
疲劳试验采用荷载控制,正弦波加载,加载频率为8 Hz,疲劳试验的应力比为0.1.HFRC考虑存活率的不同应力水平下的极限疲劳变形(Δ)见
S | No. | Δ/mm | P | S | No. | Δ/mm | P |
---|---|---|---|---|---|---|---|
1.0 | 1 | 0.586 6 | 0.857 1 | 0.8 | 1 | 0.851 1 | 0.857 1 |
2 | 0.619 3 | 0.714 3 | 2 | 0.877 1 | 0.714 3 | ||
3 | 0.629 5 | 0.571 4 | 3 | 0.897 6 | 0.571 4 | ||
4 | 0.634 2 | 0.428 6 | 4 | 0.902 2 | 0.428 6 | ||
5 | 0.639 4 | 0.285 7 | 5 | 0.926 2 | 0.285 7 | ||
6 | 0.658 2 | 0.142 9 | 6 | 0.975 2 | 0.142 9 | ||
0.9 | 1 | 0.740 3 | 0.857 1 | 0.7 | 1 | 1.033 4 | 0.857 1 |
2 | 0.768 9 | 0.714 3 | 2 | 1.077 9 | 0.714 3 | ||
3 | 0.788 1 | 0.571 4 | 3 | 1.112 3 | 0.571 4 | ||
4 | 0.808 6 | 0.428 6 | 4 | 1.169 8 | 0.428 6 | ||
5 | 0.822 1 | 0.285 7 | 5 | 1.183 4 | 0.285 7 | ||
6 | 0.831 7 | 0.142 9 | 6 | 1.232 3 | 0.142 9 |

图1 混杂纤维多尺度桥接效应示意图
Fig.1 Schematic diagram of hybrid fiber bridging effect

图2 HFRC的破坏形态
Fig.2 Failure modes of HFRC

图3 HFRC破坏断面中纤维的SEM图像
Fig.3 SEM images of fibers in the broken sections of HFRC

图4 典型的HFRC疲劳应力-应变曲线
Fig.4 Typical fatigue stress‑strain curves of HFRC
滞回耗能被认为是表征循环荷载作用下混凝土疲劳性能的一个关键指标.可以用滞回曲线的面积表征混凝土在疲劳荷载作用下的能量耗散(E

图5 HFRC在不同应力水平下的能量耗散比
Fig.5 Energy dissipation ratios of HFRC under various stress levels

图6 HFRC疲劳变形随循环比的变化过程
Fig.6 Fatigue deformation evolution curves of HFRC with ratios of load cycles
为了全面评估HFRC的疲劳变形能力,同时尽量减少离散性对结果的影响,取6个平行试件的平均值作为判断标准.以混凝土材料受压变形规律为基础,选取12个特征点的数据,即循环比分别为0.05、0.10、0.15、0.20、0.40、0.60、0.80、0.85、0.90、0.95、0.995、1.00,获得HFPC的平均疲劳变形曲线,如
(1)在不同应力水平下,HFRC的疲劳变形演化曲线总体相差不大,仅在最后阶段有较大差别.应力水平越小,HFRC的极限疲劳变形越大(极限疲劳变形为疲劳破坏点对应的变形),如

图7 HFRC在不同应力水平下的极限疲劳变形
Fig.7 Ultimate fatigue deformations of HFRC under various stress levels
(2)应力水平对HFRC极限疲劳变形的影响可能与纤维的滑移量有关.当HFRC接近疲劳破坏时,由于广泛开裂和膨胀,钢纤维处于完全被激活的状态.随着裂纹的不断扩展,主裂缝处的钢纤维不断被拔出.此处可以借鉴钢纤维拔出的全过

图8 钢纤维拔出行为示意图
Fig.8 Schematic diagram of pull‑out behavior of steel fibers embedded in concret
由
双参数威布尔分布的概率密度函数f(x)如

图9 威布尔分布的概率密度函数
Fig.9 Weibull probability distribution
(1) |
式中:x为极限疲劳变形;a为形状参数;b为尺度参数,mm.
由
(2) |
对
(3) |
由

图10 ln Δ和ln [ln (1/P)]的拟合直线
Fig.10 Fitting lines of ln Δ and ln [ln (1/P)]
各应力水平下的威布尔分布参数见
Parameter | S=1.0 | S=0.9 | S=0.8 | S=0.7 |
---|---|---|---|---|
a | 23.106 | 20.807 | 18.855 | 13.971 |
b/mm | 0.640 4 | 0.810 7 | 0.926 8 | 1.171 5 |
由
(4) |
式中:p、q为通过试验数据拟合得到的参数.

图11 极限疲劳变形和应力水平之间的关系
Fig.11 Relationship between ultimate fatigue deformation and stress level
由
(5) |
式中:a0和b0分别为Δ0的形状参数和尺度参数.
由
(6) |
为了验证P‑S‑Δ模型的可靠性,需要将此模型得出的解析结果和本文试验数据进行比较(见

图12 模型解析结果和本文试验数据的对比
Fig.12 Comparisons between model predictions and test results
(1)钢-聚丙烯混杂纤维具有多层次、多尺度和逐级阻裂的特点;HFRC的受压疲劳破坏形态和静载破坏形态类似,皆表现为剪切破坏,呈现出延性破坏特征.
(2)HFRC的受压疲劳变形演化曲线受应力水平的影响较小,仅在最后阶段有较大差别;其极限疲劳变形和能量耗散能力随应力水平减小而增大.
(3)HFRC的受压极限疲劳变形符合双参数威布尔分布;基于疲劳试验数据,建立了P‑S‑Δ方程,能够定量描述HFRC在任意受压疲劳荷载作用下的极限变形,可为HFRC结构的抗疲劳设计提供参考.
参考文献
徐礼华,梅国栋,黄乐,等. 钢-聚丙烯混杂纤维混凝土轴心受拉应力‑应变关系研究[J]. 土木工程学报, 2014, 47(7): 35‑45. [百度学术]
XU Lihua, MEI Guodong, HUANG Le, et al. Study on uniaxial tensile stress‑strain relationship of steel‑polypropylene hybrid fiber reinforced concrete[J]. China Civil Engineering Journal, 2014, 47(7): 35‑45. (in Chinese) [百度学术]
DENG F Q, XU L H, CHI Y, et al. Effect of steel‑polypropylene hybrid fiber and coarse aggregate inclusion on the stress‑strain behavior of ultra‑high performance concrete under uniaxial compression[J]. Composite Structures, 2020, 252: 112685. [百度学术]
王龙,池寅,徐礼华,等. 混杂纤维超高性能混凝土力学性能尺寸效应[J]. 建筑材料学报, 2022, 25(8):781‑788. [百度学术]
WANG Long, CHI Yin, XU Lihua, et al. Size effect of mechanical properties of hybrid fiber ultra‑high performance concrete[J]. Journal of Building Materials, 2022, 25(8):781‑788. (in Chinese) [百度学术]
徐礼华,李彪,池寅,等. 钢-聚丙烯混杂纤维混凝土单轴循环受压应力-应变关系研究[J]. 建筑结构学报, 2018, 39(4):140‑152. [百度学术]
XU Lihua, LI Biao, CHI Yin, et al. Experimental investigation on stress‑strain relation of steel‑polypropylene hybrid fiber reinforced concrete subjected to uniaxial cyclic compression[J]. Journal of Building Structures, 2018, 39(4):140‑152. (in Chinese) [百度学术]
吴涛,杨雪,刘喜. 钢-聚丙烯混杂纤维自密实轻骨料混凝土性能[J]. 建筑材料学报, 2021, 24(2):268‑275. [百度学术]
WU Tao, YANG Xue, LIU Xi. Properties of self‑compacting lightweight concrete reinforced with hybrid steel and polypropylene fibers[J]. Journal of Building Materials, 2021, 24(2):268‑275. (in Chinese) [百度学术]
LI Q H, HUANG B T, XU S L, et al. Compressive fatigue damage and failure mechanism of fiber reinforced cementitious material with high ductility[J]. Cement and Concrete Research, 2016, 90:174‑183. [百度学术]
李力剑,徐礼华,池寅,等. 含粗骨料超高性能混凝土单轴受压疲劳性能[J]. 建筑材料学报, 2022, 25(4):381‑388. [百度学术]
LI Lijian, XU Lihua, CHI Yin, et al. Fatigue behavior of ultra‑high performance concrete with coarse aggregate under uniaxial cyclic compression[J]. Journal of Building Materials, 2022, 25(4):381‑388. (in Chinese) [百度学术]
寇佳亮,赵坤龙,张浩博. 高延性纤维混凝土拉压疲劳性能试验研究[J]. 土木工程学报. 2018, 51(9):17‑25. [百度学术]
KOU Jialiang, ZHAO Kunlong, ZHANG Haobo. Experimental study on tension and compression fatigue properties of high ductile fiber concrete[J]. China Civil Engineering Journal, 2018, 51(9):17‑25. (in Chinese) [百度学术]
GOEL S, SINGH S P. Fatigue performance of plain and steel fibre reinforced self compacting concrete using S‑N relationship[J]. Engineering Structures, 2014, 74:65‑73. [百度学术]
POVEDA E, RUIZ G, CIFUENTES H, et al. Influence of the fiber content on the compressive low‑cycle fatigue behavior of self‑compacting SFRC[J]. International Journal of Fatigue, 2017, 101:9‑17. [百度学术]
PARVEZ A, FOSTER S J. Fatigue of steel‑fibre‑reinforced concrete prestressed railway sleepers[J]. Engineering Structures, 2017, 141:241‑250. [百度学术]
MA Y H, GU J Y, LI Y, et al. The bending fatigue performance of cement‑stabilized aggregate reinforced with polypropylene filament fiber[J]. Construction and Building Materials, 2015, 83:230‑236. [百度学术]
SUN Z Z, XU Q W. Microscopic, physical and mechanical analysis of polypropylene fiber reinforced concrete[J]. Materials Science and Engineering:A, 2009, 527(1/2):198‑204. [百度学术]
CUI K, XU L H, LI X F, et al. Fatigue life analysis of polypropylene fiber reinforced concrete under axial constant‑amplitude cyclic compression[J]. Journal of Cleaner Production, 2021, 319:128610. [百度学术]
邹尤. 混杂纤维混凝土弯曲疲劳特性研究[D]. 武汉:武汉理工大学, 2010. [百度学术]
ZOU You. Study on flexural fatigue performance of hybrid fiber reinforced concrete[D]. Wunhan:Wuhan University of Technology, 2010. (in Chinese) [百度学术]
BAJAJ V, SINGH S P, SINGH A P, et al. Flexural fatigue analysis of hybrid fibre‑reinforced concrete[J]. Magazine of Concrete Research, 2012, 64(4):361‑373. [百度学术]
HUANG L, XU L H, CHI Y, et al. Bond strength of deformed bar embedded in steel‑polypropylene hybrid fiber reinforced concrete[J]. Construction and Building Materials, 2019, 218:176‑192. [百度学术]
DONG S F, WANG Y L, ASHOUR A, et al. Uniaxial compressive fatigue behavior of ultra‑high performance concrete reinforced with super‑fine stainless wires[J]. International Journal of Fatigue, 2021, 142:105959. [百度学术]
DENG F Q, DING X X, CHI Y, et al. The pull‑out behavior of straight and hooked‑end steel fiber from hybrid fiber reinforced cementitious composite:Experimental study and analytical modelling[J]. Composite Structures, 2018, 206:693‑712. [百度学术]
HUANG B T, LI Q H, XU S L, et al. Fatigue deformation behavior and fiber failure mechanism of ultra‑high toughness cementitious composites in compression[J]. Materials and Design, 2018, 157:457‑468. [百度学术]