摘要
采用自研足尺寸木质梁蠕变测试系统,对昆明室内自然环境下2种实木矩形梁和3种木工字梁进行了200 d蠕变测试,并分析其含水率与相对湿度的关系.结果表明:木质梁含水率的变化明显滞后于相对湿度的变化,且其在吸湿段的滞后大于解吸段;2种实木矩形梁和3种木工字梁在低湿波动、高湿波动、湿度持续波动上升和湿度持续波动下降这4类相对湿度典型变化时段的平均蠕变速率分别为8.839×1
实木矩形梁和木工字梁是现代轻型木结构建筑楼面及屋面的主要承重构件,其在外荷载和环境温湿度的作用下会发生蠕变,进而影响建筑的正常使用,甚至会危及建筑的安
为解决工程界存在的上述困惑并探究室内自然环境对足尺寸木质梁蠕变的实际影响,本研究同时测试了2类共5种足尺寸木质梁(2种实木矩形梁和3种木工字梁)在自然环境下的蠕变.同时以蠕变测试期内的环境温湿度为边界条件,借助木材水分扩散理论和Matlab自编程序定量计算了2类木质梁内部的水分分布,在此基础上量化评价室内自然环境与2类木质梁蠕变的关系及其对不同类型木质梁蠕变的影响.
在前期大量制作的2种实木矩形梁和3种木工字梁中分别精心挑选纹理平直、节疤较少且静曲弹性模量(EMOE)接近的试件各8条、共40条木质梁用于测试.对于实木矩形梁,每种规格试件中的7条用于静曲强度(MOR)测试,1条用于静曲蠕变测试;对于木工字梁,每种规格试件中的6条用于静曲强度测试,2条用于静曲蠕变测试.实木矩形梁和木工字梁的基本参数分别如表
Specimen type | Raw material | Dimension/(mm×mm×mm) | Density/(kg· |
---|---|---|---|
SPRB | Southern yellow pine, pinus taeda linn | 4 338.0×38.5×195.5 | 448 |
GWRB | SPF glulam from Canada | 4 338.0×38.5×200.5 | 380 |
Note: SPF—Combination of three species (spruce‑pine‑fir) with similar properties; SPRB—Abbreviation of southern pine rectangular beam; GWRB—Abbreviation of glulam rectangular beam.
Specimen type | Flange | Web | IB dimension/(mm×mm×mm) | |||||
---|---|---|---|---|---|---|---|---|
Raw material | Density/(kg· | Dimension/(mm×mm) | Raw material | Density/(kg· | Dimension/(mm×mm) | |||
SOIB | SPF finger‑jointed lumber | 380 | 38.5×38.5 | OSB | 650 | 184.5×10.0 | 4 338.0×38.5×235.5 | |
LOIB | Populus LVL | 551 | 38.5×38.5 | OSB | 650 | 184.5×10.0 | 4 338.0×38.5×235.5 | |
LPIB | Populus LVL | 551 | 38.5×38.5 | Structural plywood | 630 | 184.5×10.0 | 4 338.0×38.5×235.5 |
Note: OSB—Oriented strand board; LVL—Laminated veneer lumber; SOIB—Abbreviation of I‑beam with southern pin flange and OSB web; LOIB—Abbreviation of I‑beam with LVL flange and OSB web; LPIB—Abbreviation of I‑beam with LVL flange and plywood web.

图1 试件截面的示意图
Fig.1 Schematic diagram of cross sections of specimens(size: mm)
(1)足尺寸木质梁静曲蠕变测试系统1套,放置于通风良好,可提供遮阳、避尘和挡雨试验条件的专用房间,如

图2 足尺寸木质梁静曲蠕变测试系统
Fig.2 Static bending creep test system of large‑scale wooden beams
(2)AGS‑X型10 t岛津万能力学试验机,力测试精度为±1 N,位移精度为±0.01 mm.
(3)Testo 174H型温湿度记录器,温度精度为±1 ℃,相对湿度(RH)精度为±3%.
(4)Sartorius天平,量程为10 kg,精度为±0.1 g.
依据ASTM D198—15《Standard test methods of static tests of lumber in structural sizes》对各类型木质梁做非破坏性静曲弹性模量测试.首先挑选出各类型木质梁的蠕变测试试件,其余试件测试静曲强度.5种木质梁的平均静曲强度、变异系数(COV)和静曲弹性模量如
Specimen type | Average σMOR/MPa | COV/% | EMOE/MPa | Load/N |
---|---|---|---|---|
SPRB | 72.54 | 13.48 | 9 180 | 4 498 |
GWRB | 70.41 | 14.60 | 8 709 | 4 067 |
SOIB1 | 28.35 | 17.91 | 10 255 | 2 568 |
SOIB2 | 8 735 | 2 176 | ||
LOIB1 | 35.81 | 14.34 | 8 687 | 2 832 |
LOIB2 | 8 799 | 3 116 | ||
LPIB1 | 37.87 | 15.46 | 9 326 | 3 097 |
LPIB2 | 9 235 | 3 263 |
采用四点弯静曲加载方式测试各类型木质梁的蠕变性能,如

图3 四点弯静曲蠕变测试示意图
Fig.3 Schematic diagram of four‑point bending creep test
依据试验时段的气象资料,本研究提出了一个适用于昆明地区,以日出为起始计算时刻,并可同时定量描述气温和相对湿度的拟合方程,如
(1) |
式中:y为气候参数的拟合值;y0为实测气候参数的标定值;A为气候参数的极差,K/
(2) |
(3) |
式中:Tave为日平均气温,K;Tr为当日气温的极差,K;Rave为日平均相对湿度;Rr为当日相对湿度的极差.
上述拟合方程对昆明地区温湿度的拟合效果较好,本研究以此作为边界条件,定量计算木质梁的截面水分分布.
木材在室内自然环境下会发生吸湿或解吸,从而导致其内部水分随着环境温湿度的变化而时刻发生改变.Dong
现有研究认为翼缘对木工字梁静曲挠度的影响占绝对主导作
本研究采用自编Matlab程序计算木工字梁翼缘(意杨)和实木矩形梁(云杉-松树-冷杉胶合木)横截面的含水率(,质量分数)分布,两者的尺寸(宽度×高度)分别为38 mm×38 mm和38 mm×200 mm.
本研究选取低湿波动(a)、高湿波动(b)、湿度持续波动上升(c)和湿度持续波动下降(d)这4种可以囊括相对湿度基本变化规律的时段,定量考查其对足尺寸木质梁含水率的影响,具体计算时段详见
Period | Start to end | Brief description of RH |
---|---|---|
a | Feb.3-Feb.10 | Around 40% |
b | Nov.3-Nov.10 | Around 65% |
c | Oct.11-Oct.23 | 40%-80% |
d | Feb.21-Mar.4 | 60%-30% |

图4 不同相对湿度波动时段实木矩形梁截面平均含水率和距表层1、3、5 mm深度处含水率的变化曲线
Fig.4 Curves of average variation of cross sections and variation of layers at the depth of 1, 3, 5 mm from the surface of wood rectangular beams during different RH fluctuation periods
由
由此可见:木质梁的吸湿和解吸相对于相对湿度的变化有不同程度的滞后,且吸湿阶段的滞后度大于解吸阶段;木质梁表层的含水率最易受环境因素的影响.
蠕变试验从2013年8月23日开始并持续至2014年3月11日,共200 d.

图5 试验周期内实木矩形梁和木工字梁的蠕变挠度曲线
Fig.5 curves of wood rectangular beams and wood I‑beams in experimental cycle

图6 试验周期内相对湿度波动曲线
Fig.6 Relative humidity fluctuation curves in experimental cycle
由于直接暴露在室内温湿度波动较大环境中的木质梁上、下表面在分别承受最大压缩应力和最大拉伸应力的同时又经历着最剧烈的含水率波动变化,加之含水率会显著影响木材的力学性能,进而影响其蠕变性

图7 低湿波动时段实木矩形梁和木工字梁的表层含水率与蠕变挠度曲线
Fig.7 Surface and curves of wood rectangular beams/wood I‑beams during period a

图8 高湿波动时段实木矩形梁和木工字梁的表层含水率与蠕变挠度曲线
Fig.8 Surface and curves of wood rectangular beams/wood I‑beams during period b
时段a和时段b气温和相对湿度大约以24 h为周期波动.在该环境中,实木矩形梁和木工字梁表层的吸湿和解吸稳定交替进行,表层的含水率几乎完全一致.对于同一时段不同类型的梁来说,蠕变速率近乎相同;对于不同时段同一类型的梁来说,蠕变速率存在较大差异,时段b的蠕变速率为1.183×1
在湿度持续波动上升时段c,实木矩形梁和木工字梁总体处于吸湿过程,该过程中木质材料由于含水率上升所引发的静曲弹性模量下降本应导致其挠度的大幅增加,但实际蠕变挠度却减小,这是典型的机械吸附蠕变.

图9 湿度持续波动上升时段实木矩形梁和木工字梁的表层含水率与蠕变挠度曲线
Fig.9 Surface and curves of wood rectangular beams/wood I‑beams during period c

图10 湿度持续波动下降时段实木矩形梁和木工字梁的表层含水率与蠕变挠度曲线
Fig.10 Surface and curves of wood rectangular beams/wood I‑beams during period d
时段c和时段d处于昆明地区干湿两季的转变区间内,相对湿度在较长时间内变化趋势明显.在这种环境中,实木矩形梁和木工字梁表层含水率的总体变化趋势基本一致,但木工字梁表层含水率以日为周期大幅起落,相比之下实木矩形梁表层含水率的波动更为平缓.形成这种现象的原因可能是:实木矩形梁体积大,能够缓冲并存蓄相对湿度波动造成的实木矩形梁表层含水率波动;木工字梁翼缘体积较小,截面轮廓与空气的接触面积较大,且内部还插入了几乎不吸湿的腹板,其较小的体积无法缓冲并存蓄相对湿度波动造成的木工字梁表层含水率波动,因此对相对湿度的波动较为敏感.
在时段c和时段d,2类木质梁均表现出明显的机械吸附蠕变行为,但总体上实木矩形梁的蠕变趋势比木工字梁更为平缓,而木工字梁则表现出表层含水率的剧烈波动和相对较大的蠕变挠度变化,因此木工字梁的蠕变速率绝对值也更大,表明表层含水率的大幅波动更易造成木质梁蠕变挠度较大幅度的波动.其中表现最为明显的是:木工字梁在时段c的蠕变挠度平缓下降,而在时段d则表现出剧烈的、几乎以日为计时单位的阶梯式上升,表明在吸湿阶段,木工字梁本该由于其静曲弹性模量(主要是翼缘)的逐步下降而发生总体挠度的增大,但其总体挠度却呈下降趋势,这显然是由于其蠕变挠度发生了“恢复”;而在解吸阶段,本该由于其静曲弹性模量的逐步增大而发生总体挠度的减小,但其总体挠度却呈上升趋势,这显然是由于蠕变造成了“额外”的挠
产生上述现象的原因主要有2个:
(1)木质梁在静曲受力时其上表面承受最大压应力的作用,而下表面承受最大拉应力的作用.由于木材强度和弹性模量均随含水率的增大而减小,因此随着环境温湿度的变化,实木矩形梁和木工字梁从表层到芯层的含水率均发生跟随性变化而直接导致其整体挠度的跟随性变化,且木梁最外层含水率的变化对其总体挠度的影响最大.
(2)根据Nguyen
(4) |
式中:为t时刻的蠕变挠度;为恒定应力,Pa;为弹性模量,Pa;为蠕变模量,Pa;为黏性阻尼蠕变参数,Pa·s;为与不可恢复应变相关的牛顿黏壶黏度,Pa·s;为机械吸附蠕变参数,Pa;为初始参考含水率与t时刻含水率之差,%.其中、、、、和均为常数.
(5) |
式中:为初始参考含水率,%;为t时刻的含水率,%.
木工字梁表层含水率相较实木矩形梁更易波动,即木工字梁的值均大于实木矩形梁的值,因此在相同的试验环境和时段内,木工字梁更易受到环境湿度的波动影响而发生更为明显的蠕变挠度波动.
依据ASTM D6815—2015《Standard specification for evaluation of duration of load and creep effects of wood and wood‑based products》计算实木矩形梁和木工字梁的蠕变评价参数及指标,结果如
Specimen type | 30-ini | 60-30 | 90-60 | FB90 |
---|---|---|---|---|
SPRB | 3.79 | 1.07 | -0.04 | 1.26 |
GWRB | 3.55 | 0.91 | 0 | 1.29 |
SOIB1 | 3.32 | 1.13 | 0.75 | 1.49 |
SOIB2 | 4.07 | 0.27 | 0.63 | 1.43 |
LOIB1 | 4.41 | 0.94 | 0.26 | 1.37 |
LOIB2 | 4.76 | 1.07 | 0.44 | 1.40 |
LPIB1 | 4.18 | 0.98 | 0.28 | 1.36 |
LPIB2 | 4.32 | 1.40 | 0.13 | 1.40 |
(1)室内自然环境下木质梁含水率的变化明显滞后于相对湿度的变化,并且吸湿过程中的滞后大于解吸过程中的滞后.
(2)造成木工字梁产生更大蠕变挠度的原因是其表层含水率更易随环境温湿度的变化产生频繁且大幅度的吸湿和解吸行为.
(3)实木矩形梁和木工字梁都存在明显的机械吸附蠕变行为,在环境发生季节性干湿转变的过程中,实木矩形梁的抗蠕变性能更好,其他时段2类梁的抗蠕变性能近似,且均满足建筑用材的抗蠕变要求.
参考文献
NAVI P, STANZL‑TSCHEGG S. Micromechanics of creep and relaxation of wood. A review COST Action E35 2004‑2008:Wood machining‑micromechanics and fracture[J]. Wood Research and Technology, 2009, 63:186‑195. [百度学术]
ARMSTRONG L, CHRISTENSEN G. Influence of moisture changes on deformation of wood under stress[J]. Nature, 1961, 191(4791):869‑870. [百度学术]
HOUŠKA M, KOC P. Sorptive stress estimation:An important key to the mechano‑sorptive effect in wood[J]. Mechanics of Time‑Dependent Materials, 2000, 4(1):81‑98. [百度学术]
张尚,董春雷,窦玲,等.糠醇和玻璃纤维处理对木材弯曲蠕变的影响[J].建筑材料学报, 2020, 23(1):162‑167. [百度学术]
ZHANG Shang, DONG Chunlei, DOU Ling, et al. Effect of furfurylation and glass fiber treatment on bending creep of wood[J]. Journal of Building Materials, 2020, 23(1):162‑167. (in Chinese) [百度学术]
CHENG J, SCHNIEWIND A P. Creep buckling of small, slender wood columns under cyclic environment[J]. Wood and Fiber Science, 1985, 17(2):159‑169 [百度学术]
SRPČIČ S, SRPČIČ J, SAJE M, et al. Mechanical analysis of glulam beams exposed to changing humidity[J]. Wood Science and Technology, 2009, 43(1/2):9‑22. [百度学术]
ROEDER R W JR, MANBECK H B, JANOWIAK J J. Creep behavior of solid‑sawn and wood I‑joist floors[J]. Transactions of the ASAE, 2005, 48(1):341‑349. [百度学术]
LEICHTI R J, TANG R C. Comparative performance of long‑term loaded wood composite I‑beams and sawn lumber[J]. Wood and Fiber Science, 1989, 21(2):142‑154. [百度学术]
LEICHTI R J, TANG R C. Effect of creep on the reliability of sawn lumber and wood‑composite I‑beams[J]. Mathematical and Computer Modelling, 1989, 12(2):153‑161. [百度学术]
FRIDLEY K J, TANG R C. Shear effects on the creep behavior of wood composite I‑beams[J]. Forest Products Journal, 1992, 42(6):17‑22. [百度学术]
JOHNSON A P. Creep of wood I‑joists exposed to abnormally high moisture conditions[J]. Practice Periodical on Structural Design and Construction, 2003, 8(1):36‑40. [百度学术]
国家气象信息中心. 中国地面气象站逐小时观测资料[DB/OL].(2022‑08‑10)[2022‑08‑10]. https://data.cma.cn/data/cdcdetail/dataCode/A.0012.0001.html. [百度学术]
National Meteorological Information Center. Hourly observations from ground‑based weather stations in China[DB/OL].(2022‑08‑10)[2022‑08‑10]. https://data.cma.cn/data/cdcdetail/dataCode/A.0012.0001.html.(in Chinese) [百度学术]
龙卫国. 木结构设计手册[M]. 北京:中国建筑工业出版社, 2005:41‑43. [百度学术]
LONG Weiguo. Design handbook for wood construction[M]. Beijing:China Architecture & Building Press, 2005:41‑43. (in Chinese) [百度学术]
HOYLE R J, ITANI R Y, ANDERSON J T. The effect of moisture cycling on creep of small glued laminated beams[J]. Wood and Fiber Science, 1994, 26(4):556‑562. [百度学术]
HOLZER S M, LOFERSKI J R, DILLARD D A. A review of creep in wood:Concepts relevant to develop long‑term behavior predictions for wood structures[J]. Wood and Fiber Science, 1989, 21(4):376‑392. [百度学术]
DONG C L, YANG Y, ZHANG H J, et al. Modeling and experimental validation of elastic modulus of pinus yunnanensis exposed to high relative humidity[J]. Wood Science and Technology, 2017, 51(5):1015‑1031. [百度学术]
BREWIS D M, COMYN J, PHANOPOULOS C. Effect of water on some wood adhesives[J]. International Journal of Adhesion and Adhesives, 1987, 7(1):43‑48. [百度学术]
平立娟,王喜明,颜燕,等.樟子松木材高温干燥过程中水分的非稳态扩散和干燥能耗的研究[J].林产工业, 2018, 45(9):28‑32, 51. [百度学术]
PING Lijuan, WANG Ximing, YAN Yan, et al. Study on unsteady‑state moisture transfer and energy consumption in high temperature drying process of pinus sylvestris var. mongolica litv.[J]. China Forest Products Industry, 2018, 45(9):28‑32, 51. (in Chinese) [百度学术]
张宏健, 董春雷,袁福兴,等. 木结构楼板托梁用木质工字梁静曲性能的设计[J]. 中国建材科技, 2009, 18(6):74‑78. [百度学术]
ZHANG Hongjian, DONG Chunlei, YUAN Fuxing, et al. Designing basis of the static bending performance of wood I‑joist for flooring of wooden houses[J]. China Building Materials Science and Technology, 2009, 18(6):74‑78. (in Chinese) [百度学术]
周定国. 异氰酸酯定向结构板的蠕变特性[J].林业科技开发, 1991(1):33‑34. [百度学术]
ZHOU Dingguo. Creep properties of isocyanate oriented structural panels[J]. Journal of Forestry Engineering, 1991(1):33‑34. (in Chinese) [百度学术]
彭辉,蒋佳荔,詹天翼,等. 木材普通蠕变和机械吸湿蠕变研究概述[J]. 林业科学, 2016, 52(4):116‑126. [百度学术]
PENG Hui, JIANG Jiali, ZHAN Tianyi, et al. A review of pure viscoelastic creep and mechano‑sorptive creep of wood[J]. Scientia Silvae Sinicae, 2016, 52(4):116‑126. (in Chinese) [百度学术]
张家亮,童科挺,陈伟,等.长期荷载作用下钢-竹组合柱的力学性能[J]. 建筑材料学报, 2021, 24(4):800‑810. [百度学术]
ZHANG Jialiang, TONG Keting, CHEN Wei, et al. Mechanical properties of steel‑bamboo composite columns under long‑term loading[J]. Journal of Building Materials, 2021, 24(4):800‑810. (in Chinese) [百度学术]
ISHIMARU Y, ARAI K, MIZUTANI M, et al. Physical and mechanical properties of wood after moisture conditioning[J]. Journal of Wood Science, 2001, 47(3):185‑191. [百度学术]
NGUYEN T T, DAO T N, AALETI S, et al. Numerical model for creep behavior of axially loaded CLT panels[J]. Journal of Structural Engineering, 2019, 145(1):04018224. [百度学术]