摘要
为探究钢筋的力磁耦合特性,开展反复拉伸试验,研究了钢筋应力σ、应变ε与漏磁强度法向分量BZ之间的关联,引入了“应力变化参量”σN与“漏磁强度变化参量”BN.结果表明:钢筋反复拉伸过程中ε值与BZ值均具有可逆性,且应变幅的增大使得BZ变化速率减小;σ与BZ的波动周期相同,波动方向相反;不同反复拉伸阶段下应力幅与漏磁强度变化率的比例关系一致,且相对偏差率小于9.40%;σN与BN呈线性关系,拟合直线斜率接近1.000,表明应力幅变化率与漏磁强度变化率相对等;仿真分析与试验结果吻合.
由于桥梁工程具有反复承载的受力特征,钢筋作为其中的受力构件,其应力状态与结构的安全性能密不可
自发漏磁检测方法是根据铁磁材料的磁学特性,依靠地磁场激励,通过解析材料表面磁场变化来推测外部损伤与内部应力的无损检测手
然而,当前关于反复荷载下钢筋力磁效应的研究存在空缺,应力波动情况下的力磁效应尚不明确.为模拟桥梁的受力特征,本文开展钢筋反复拉伸试验,通过施加不同强度的反复拉伸荷载,检测钢筋表面漏磁强度,分析应力与漏磁强度之间的变化关系,以明确力磁耦合过程的量化特征,为自发漏磁检测原理运用于桥梁结构的工作应力检测提供指导和借鉴意义.
试验采用钢筋混凝土桥梁中常用的HRB400钢筋,长度为800 mm,直径为20 mm,共计8根,均源自同一生产批次.HRB400钢筋的化学组成(质量分数)如
C | Si | Mn | S | P |
---|---|---|---|---|
≤0.250 | ≤0.800 | 1.000-1.600 | ≤0.045 | ≤0.045 |
钢筋拉伸装置为WAM‑1000微机电液伺服万能试验机,最大拉伸荷载为1 000 kN.磁场检测装置为三轴磁场扫描设备,包括控制系统、三轴机械位移系统和HMR2300磁强计,可同时自动化检测空间3个维度的磁感应强度,量程为±2×1

图1 试验材料、试验装置及试验过程
Fig.1 Experimental materials, experimental device and experimental process
将钢筋两端夹持在试验机上,拉伸速率为2 mm/min,先预加载至70 kN,以模拟桥梁结构的自重荷载,而后开展反复拉伸加载试验.
Specimen No. | Stage 1 | Stage 2 | Stage 3 | Stage 4 | ||||
---|---|---|---|---|---|---|---|---|
T1/kN | σ1/MPa | T2/kN | σ2/MPa | T3/kN | σ3/MPa | T4/kN | σ4/MPa | |
| 60 | 192 | 100 | 320 | ||||
| 40 | 128 | 60 | 192 | 100 | 320 | ||
| 20 | 64 | 40 | 128 | 60 | 192 | 100 | 320 |

图2
Fig.2 Schematic diagram of stress change during repeated tensile loading of
在钢筋试件拉伸加载前,先采用无磁性的橡胶棒代替钢筋,夹持在试验机两端,利用三轴磁场强度扫描设备检测各测点处的背景磁感应强度B0;再进行钢筋试件的反复拉伸加载试验,当钢筋试件拉伸至预定荷载时,持荷并进行自动化在线检测磁感应强度.需要说明的是,磁强计扫描路径沿钢筋试件长度方向(Y方向),扫描速率为10 mm/s,用于采集钢筋试件表面各测点的磁感应强度.钢筋试件表面共12个测点(
试验过程中保持试验装置位置固定,将在线检测得到的磁感应强度统一扣除B0.对比钢筋试件表面3种漏磁强度分量的变化特征后,发现垂直于钢筋试件方向(Z方向)的漏磁强度(法向分量BZ)具有显著特征规律,因此本文针对钢筋试件的BZ展开分析.
对同组的2根钢筋进行相同拉伸加载,比对后发现两者的BZ变化规律具有相似性,因此每组选取1根钢筋进行分析.

图3
Fig.3 BZ variation curves of
对比
Lift‑off height/mm | σ=0 MPa | σ=127.3 MPa | σ=254.6 MPa | σ=382.0 MPa | ||||
---|---|---|---|---|---|---|---|---|
BZ(1‑12)×1 | P/% | BZ(1‑12)×1 | P/% | BZ(1‑12)×1 | P/% | BZ(1‑12)×1 | P/% | |
0 | 896.9 | 527.8 | 305.9 | 169.4 | ||||
20 | 807.2 | 89.9 | 466.0 | 88.3 | 263.4 | 86.1 | 144.9 | 85.5 |
40 | 605.4 | 67.5 | 339.5 | 64.3 | 210.0 | 68.6 | 106.5 | 62.9 |
在实际桥梁结构中,钢筋与混凝土是紧密连接的,且由于混凝土为非磁性材料,因此在结构受力过程中所表现出的漏磁特性来自于钢筋材料.Gong

图4 钢筋混凝土梁四点弯曲加载过程中的BZ变化曲线
Fig.4 BZ variation curves during four‑point bending loading of reinforced concrete beam
选取

图5 HRB400钢筋应力-应变(σ‑ε)曲线
Fig.5 Stress‑ strain(σ‑ε) curves of HRB400 steel bars
选取
(1) |
式中:ΔBZ表示单次周期内漏磁强度上下极值点差值;Δε表示单次周期内钢筋的应变变化量.

图6
Fig.6 Relationship between BZ and ε, K during repeated tensile loading of
K值反映了BZ与ε之间的关联程度,K值越大,BZ‑ε曲线升降坡度越大,两者的关联度越高.选取
选取

图7
Fig.7 Comparative diagram of stress variation curves and magnetic leakage intensity variation curves of
反复拉伸阶段单次周期内钢筋试件的ΔBZ计算式为:
(2) |
式中:为钢筋试件10次周期内BZ曲线的上极值点平均值,1
Stage | σi/MPa | ΔBZ×1 | |||
---|---|---|---|---|---|
Measurement point | Measurement point | Measurement point | Measurement point 1 | ||
1 | 64 | 25.1 | 21.7 | 16.5 | 19.6 |
2 | 128 | 54.5 | 45.6 | 32.2 | 40.0 |
3 | 192 | 78.5 | 66.0 | 47.9 | 63.8 |
4 | 320 | 121.5 | 100.1 | 84.9 | 96.3 |
钢筋试件4个拉伸阶段σi的比例关系如
(3) |
以钢筋试件第4阶段的ΔBZ值为基准,比例折算出其各拉伸阶段的ΔBZ值,并与实际检测的ΔBZ值进行对比.

图8
Fig.8 Comparison of the measured ΔBZ‑σi curves and the calculated ΔBZ‑σi curves of
为进一步分析钢筋力磁耦合效应的量化特征,同时削弱测点差异的影响,引入“应力变化参量”σN与“漏磁强度变化参量”BN,其表达式为:
(4) |
(5) |
式中:σm表示钢筋反复拉伸阶段中最大应力幅,MPa;ΔBZi表示钢筋不同应力幅对应的漏磁强度变化量,1
选取

图9
Fig.9 BN‑σN fitted lines for
(6) |
式中:k为拟合直线的斜率.

图10
Fig.10 Slope values of σN‑BN fitted lines for

图11
Fig.11 BN mean curve and BN‑σN relationship scatter plot for
在力磁耦合理论研究中,由Jiles
(7) |
(8) |
式中:Man为非滞后磁化强度,A/m;E为材料弹性模量,MPa;ξ为单位体积能量系数;μT为材料初始相对磁导率,取μT=2 000;H为背景磁场强度,取H=40 A/m;b为钢筋磁化性质参数,取b=2.
运用Comsol软件建立三维带肋钢筋模型,长度为800 mm(Y坐标L=0~800 mm),直径为20 mm.将钢筋分为两端不受拉区与中部受拉区,两端夹持长度均为150 mm.在模型中设置双层矩形空气层,内层空气涵盖受拉区,尺寸为100 mm×100 mm×500 mm;外层空气涵盖整个钢筋模型,尺寸为400 mm×400 mm×1 000 mm.

图12 Comsol有限元钢筋模型示意图
Fig.12 Schematic of Comsol finite element steel bar model
设置三维测试路径沿钢筋模型长度方向,距离钢筋表面提离高度为10 mm,路径长度为240 mm(L=280~520 mm).选取模型受拉区的漏磁强度法向分量法向分量BZ进行分析.

图13 不同应力作用下的BZ‑L曲线
Fig.13 BZ‑L curves under different stress conditions
σi/MPa | L=280 mm | L=300 mm | L=320 mm | L=340 mm | ||||
---|---|---|---|---|---|---|---|---|
ΔBZD×1 | ΔBZC×1 | ΔBZD×1 | ΔBZC×1 | ΔBZD×1 | ΔBZC×1 | ΔBZD×1 | ΔBZC×1 | |
64 | 122.2 | 118.0 | 55.1 | 60.1 | 34.1 | 32.1 | 20.2 | 17.2 |
128 | 242.7 | 236.0 | 126.2 | 120.2 | 60.3 | 64.2 | 31.4 | 34.4 |
192 | 360.4 | 354.1 | 190.3 | 180.3 | 100.4 | 96.4 | 54.6 | 51.7 |
256 | 461.9 | 472.1 | 245.6 | 240.3 | 132.5 | 128.5 | 64.9 | 68.9 |
320 | 590.1 | 590.1 | 300.4 | 300.4 | 160.6 | 160.6 | 86.1 | 86.1 |
分别计算L为280、300、320、340 mm处的σN与BN,并进行拟合.

图14 钢筋模型的BN‑σN拟合直线
Fig.14 BN‑σN fitted straight line for steel bar model
(1)轴向拉伸加载过程中,随着应力的增大,钢筋试件表面的漏磁强度法向分量BZ曲线围绕钢筋扫描区间中点逆时针旋转.提离高度20、40 mm情况下钢筋试件漏磁强度百分比分别为87.5%、65.8%.降低提离高度可以扩大BZ曲线的分布区间,有利于提高自发漏磁检测方法的精准度与灵敏度.
(2)反复拉伸加卸载过程中,钢筋试件的应力-应变(σ‑ε)与BZ‑ε曲线均产生往复循环,σ与BZ均具备可逆性,且应变幅σi与漏磁变化量ΔBZ呈正相关.而σi的增大促使BZ‑ε曲线的线性斜率绝对值K减小,曲线下降坡度减小,漏磁强度变化速率减弱.
(3)波动应力作用下,钢筋试件的σ与BZ的波动周期相同,但波动方向相反.σi与ΔBZ呈正相关,且不同拉伸阶段下σi与ΔBZ的比例关系相一致,整体相对偏差率小于9.40%.钢筋试件的“应力变化参量”σN与“漏磁强度分量”BN具有线性关系,线性斜率接近于1.000,线性回归的决定系数达到0.99,其拉伸应力变化率与漏磁强度变化率相互对等.因此,依据漏磁强度法向分量的变化能够定量表征钢筋内部应力的波动幅值.
参考文献
高国旗, 陈达章, 王顺风, 等.车桥耦合振动对钢纤维与磷酸镁水泥砂浆界面黏结性能的影响[J].建筑材料学报, 2022,25(4):353‑359. [百度学术]
GAO Guoqi, CHEN Dazhang, WANG Shunfeng, et al. Effect of vehicle‑bridge coupled vibration on interface bond performance between steel fiber and magnesium phosphate cement mortar[J]. Journal of Building Materials, 2022,25(4):353‑359. (in Chinese) [百度学术]
蔡元奇, 张悦, 石祥宇, 等.电阻应变片原位温度补偿方法[J].武汉大学学报, 2020,53(7):591‑596. [百度学术]
CAI Yuanqi, ZHANG Yue, SHI Xiangyu, et al. Method of in‑situ temperature compensation for resistance strain gauge[J]. Engineering Journal of Wuhan University, 2020,53(7):591‑596. (in Chinese) [百度学术]
许国东, 相秋迪, 赵广志, 等. X射线数字成像技术检测灌浆套筒施工质量的试验研究[J].建筑结构, 2020,50(9):6,11‑15. [百度学术]
XU Guodong, XIANG Qiudi, ZHAO Guangzhi, et al. Experimental study on construction quality of grouting sleeve detected by X‑ray digital radiography technology[J]. Building Structure, 2020,50(9):6,11‑15. (in Chinese) [百度学术]
商峰, 周虎. 基于早龄期超声测试的堆石混凝土工程质量检测[J].建筑材料学报,2022,25(2):214‑220. [百度学术]
SHANG Feng, ZHOU Hu. Construction quality assessment of rock filled concrete based on early age ultrasonic wave test [J]. Journal of Building Materials, 2022,25(2):214‑220. (in Chinese) [百度学术]
周建庭, 龚娅, 赵瑞强, 等. RC梁四点弯曲加载应力自漏磁信号检测试验[J].中国公路学报,2021,34(12):46‑56. [百度学术]
ZHOU Jianting, GONG Ya, ZHAO Ruiqiang, et al. Stress self‑leakage signal detection test of RC beam under four‑point bending[J]. China Journal of Highway and Transport,2021,34(12):46‑56. (in Chinese) [百度学术]
石明江, 陈瑞, 冯林. 基于磁记忆的金属管道缺陷检测方法[J].电子测量与仪器学报,2022,36(1):44‑53. [百度学术]
SHI Mingjiang, CHEN Rui, FENG Lin. Metal pipeline defect detection method based on magnetic memory[J]. Journal of Electronic Measurement and Instrumentation, 2022,36(1):44‑53. (in Chinese) [百度学术]
RUCKI M, GOCKIEWICZ A, SZMIATA T. Evaluation of the residual magnetic field measurement system for early identification of railway defects[J]. Metrology and Measurement Systems, 2019, 26(3):687‑696. [百度学术]
卢兵兵, 王海斗, 董丽虹, 等. 金属磁记忆疲劳损伤检测的应用现状及发展前景[J].材料导报,2021,35(7):7139‑7144. [百度学术]
LU Bingbing, WANG Haidou, DONG Lihong, et al. Application status and development prospect of metal magnetic memory fatigue damage detection[J]. Materials Reports, 2021,35(7):7139‑7144. (in Chinese) [百度学术]
REN S K, REN X. Studies on laws of stress‑magnetization based on magnetic memory testing technique[J]. Journal of Magnetism and Magnetic Materials, 2017, 449:165‑171. [百度学术]
喻宣瑞, 姚国文, 钟浩, 等.交变荷载和氯盐环境耦合作用下钢绞线的腐蚀特征及力学性能[J].建筑材料学报, 2021,24(6):1315‑1321. [百度学术]
YU Xuanrui, YAO Guowen, ZHONG Hao, et al. Corrosion characteristics and mechanical properties of steel strands under coupling effect of alternating load and chloride salt environment[J]. Journal of Building Materials, 2021,24(6):1315‑1321. (in Chinese) [百度学术]
SHI P, BAI P, CHEN H E , et al. The magneto‑elastoplastic coupling effect on the magnetic flux leakage signal[J]. Journal of Magnetism and Magnetic Materials, 2020, 504:166669. [百度学术]
HUANG H H, JIANG S L, WANG Y, et al. Characterization of spontaneous magnetic signals induced by cyclic tensile stress in crack propagation stage[J]. Journal of Magnetism and Magnetic Materials, 2014, 365:70‑75. [百度学术]
章鹏, 刘琳, 陈伟民. 磁性应力监测中力磁耦合特征及关键影响因素分析[J].物理学报,2013,62(17):454‑462. [百度学术]
ZHANG Peng, LIU Lin, CHEN Weimin. Analysis of characteristics and key influencing factors in magnetomechanical behavior for cable stress monitoring[J]. Acta Physica Sinica, 2013,62(17):454‑462. (in Chinese) [百度学术]
WANG H P, DONG L H, WANG H D, et al. Effect of tensile stress on metal magnetic memory signals during on‑line measurement in ferromagnetic steel[J]. NDT & E International, 2021, 117:102378. [百度学术]
杨茂, 周建庭, 张洪, 等.混凝土内部钢筋锈蚀的磁记忆检测[J].建筑材料学报,2018,21(2):345‑350. [百度学术]
YANG Mao, ZHOU Jianting, ZHANG Hong, et al. Magnetic memory detection of rebar corrosion in concrete[J]. Journal of Building Materials, 2018,21(2):345‑350. (in Chinese) [百度学术]
SHI P P, ZHANG P C, JIN K, et al. Thermo‑magneto‑elastoplastic coupling model of metal magnetic memory testing method for ferromagnetic materials[J]. Journal of Applied Physics, 2018, 123(14):145102. [百度学术]
GONG Y, ZHOU J T, ZHAO R Q, et al. Study on stress measurement for steel bars inside RC beams based on self‑magnetic flux leakage effect[J]. Journal of Magnetism and Magnetic Materials, 2022, 562:169784. [百度学术]
JILES D. Theory of the magnetomechanical effect[J]. Journal of Physics D:Applied Physics, 1995, 28(8):1537‑1546. [百度学术]