摘要
采用X射线衍射、热重分析、扫描电镜观测、色差分析和强度性能测试等方法,研究了酸环境下石灰-偏高岭土(L‑MK)及天然水硬性石灰(NHL)改性遗址土强度与色差的变化规律,并探讨了其微观机制.结果表明:随着酸环境下干湿循环次数的增加,L‑MK改性遗址土强度先增后减,而NHL改性遗址土则单调递减,且经历20次干湿循环后L‑MK改性遗址土强度为NHL改性遗址土强度的1.6倍以上;与原样遗址土相比,8%偏高岭土掺量下L‑MK改性遗址土色差最小,且小于8%及10%NHL改性遗址土,L‑MK与NHL改性遗址土强度变化规律的差异性与水化产物水化硅酸钙(CSH)的稳定性及CaSO4·2H2O等膨胀性物质的生成量有关,采用L‑MK替代NHL应用于土遗址修复领域是可行的.
土遗址作为中华文明的重要载体,是中国重要的文化遗产资源,但因其长期暴露于自然环境下,多处出现裂隙和坍塌等病害,个别土遗址甚至已经消
目前,关于酸环境对土体力学性
近年来,虽然中国酸雨酸化趋势基本得到控制,但部分区域酸雨发生频率高居不下,且最强酸雨的pH值较
古代土质建筑在建造过程中采用挖余法、板筑夯土法和跺泥法等构筑而成的土体被称为遗址
Physical parameter | Value | |
---|---|---|
Liquid limit/% | 19.20 | |
Plastic limit/% | 8.22 | |
Plasticity index | 10.98 | |
Optimum water content (by mass)/% | 9.30 | |
Natural water content (by mass)/% | 8.30 | |
Maximum dry density/(g·c | 1.96 | |
Particle size distribution/% | Sand (0.075-2.000 mm) | 65.66 |
Silt (0.075-0.005 mm) | 32.48 | |
Clay (<0.005 mm) | 1.86 |
试验所用偏高岭土主要成分为无定型的Al2O3和SiO2,细度10 μm(1 250目),28 d火山灰活性指数为116%;所用石灰中CaO的含
Material | SiO2 | CaO | Fe2O3 | TiO2 | Al2O3 | K2O | Na2O | MgO | SO3 | IL |
---|---|---|---|---|---|---|---|---|---|---|
MK | 51.71 | 1.09 | 2.32 | 0.94 | 42.18 | 0.11 | 0.14 | 0.17 | 0.10 | 1.27 |
L | 0 | 95.60 | 0 | 0 | 0 | 0 | 0 | 0.96 | 0.06 | 3.38 |
NHL2 | 8.33 | 68.36 | 1.60 | 0.14 | 2.62 | 0.99 | 0 | 4.16 | 0.67 | 13.13 |
参照文献[
结合河南地区气候条
具体试验步骤:试样养护至28 d后放入模拟酸雨溶液中浸泡24 h,然后放入烘箱中烘干至试样含水率达到5.0%,此为脱湿过程,其中烘干温度为50
无侧限抗压强度试验和劈裂抗拉强度试验采用YYW‑2型强度试验仪,按照GB/T 50123—2019标准,以1 mm/min升降速率进行试验.每种工况下取6个平行试样,结果取平均值.
色差测试采用DC‑P3新型全自动测色色差计,基于国家照明委员会推荐的CIE
XRD试验采用Rigaku公司的D/max2550 VB3+PC型X射线衍射仪;SEM试验采用蔡司公司的场发射扫描电镜(FESEM);热重分析(TG)采用NETZSCH公司的STA 449F5型热分析仪.

图1 不同干湿循环次数下L‑MK和NHL改性土的无侧限抗压强度
Fig.1 Unconfined compressive strength of L‑MK and NHL modified soils under different dry‑wet cycles
究其原因,这是酸环境下干湿循环过程中水化体系的碱度、水化产物的稳定性、再水化与酸侵蚀作用的综合体现.偏高岭土是高岭土经过500~700 ℃煅烧形成的无定形硅、铝氧化物,易与Ca(OH)2溶液发生离子交换、火山灰等反应.
(1) |
(2) |
(3) |
(4) |

图2 干湿循环作用下试样6%L+4%MK的外观变化
Fig.2 Appearance of sample 6%L+4%MK under dry‑wet cycles
白色糊状混合物在循环前期可以填充试样表面微孔隙,降低孔隙度及渗透率.但考虑到偏高岭土化学组成主要为Si‑Al(Si‑O‑Al)体系,偏高岭土的掺入一方面增加了土体颗粒间接触面积和材料内部反应活性,致使L‑MK试样获得更高的初始反应速率和更长的反应时间;另一方面降低了L‑MK试样的钙硅比,已有研究表明,高钙硅比的CSH在SO侵蚀下更易产生多孔结构,低钙硅比的CSH则会在其表层产生硅质保护层从而延缓侵蚀作
随着循环的持续进行,溶液碱度降低,离子交换作用使试样内部Si、Al和Ca等元素含量减少,硅铝摩尔比降低,酸性溶液进入试样内部,影响水化反应产物与土颗粒之间的胶结,使水化产物不能形成网状骨架结构,因而试样强度不增加,甚至出现下降的趋势.另外,酸性溶液会溶蚀石灰-偏高岭土的水化产物,使C
反观NHL改性土,强度衰减明显,L‑MK改性土耐久性显著优于NHL改性土.以10%NHL改性土为例,5次干湿循环后试样抗压强度为1.63 MPa,较未循环前试样强度(5.12 MPa)降低68.00%,降幅显著;5次循环后试样抗压强度呈缓慢减小,而后强度基本趋于稳定.
对比试样6%L+8%MK和8%L+8%MK,经历20次干湿循环后其抗压强度分别为4.03、5.23 MPa,较未循环前试样强度分别增加了22.05%和7.43%;而同样条件下,试样8%NHL和10%NHL的抗压强度均降低为0.52 MPa,降幅分别达87.25%和89.84%.这是由于NHL中主要成分为以胶结物形式存在的CaO等氧化物,其体系的化学稳定性较偏高岭土体系弱,在酸环境下极易产生溶
不同干湿循环次数下L‑MK和NHL改性土的劈裂抗拉强度见

图3 不同干湿循环次数下L‑MK和NHL改性土的劈裂抗拉强度
Fig.3 Splitting tensile strength of L‑MK and NHL modified soils under different dry‑wet cycles

图4 无侧限抗压强度与劈裂抗拉强度破坏模式
Fig.4 Failure modes for unconfined compressive strength and splitting tensile strength
作为一种土遗址修复材料,其修复后与原遗址土样是否存在颜色差异,是评价修复材料适用性的重要参
(5) |
式中:Δ
Sample | n=0 times | n=5 times | n=10 times | n=15 times | n=20 times | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6%L+8%MK | 57.88 | 10.42 | 15.64 | 67.34 | 7.71 | 11.61 | 64.90 | 8.79 | 12.88 | 64.99 | 8.23 | 7.91 | 65.20 | 7.95 | 15.26 |
8%L+8%MK | 61.48 | 10.74 | 15.19 | 67.44 | 8.65 | 12.01 | 67.49 | 8.36 | 11.53 | 68.68 | 7.44 | 9.84 | 66.64 | 8.16 | 15.15 |
8%NHL | 54.04 | 8.09 | 16.14 | 66.48 | 6.03 | 11.83 | 63.54 | 6.79 | 12.64 | 65.19 | 6.01 | 10.94 | 64.30 | 5.77 | 12.17 |
10%NHL | 46.59 | 8.73 | 17.43 | 61.91 | 6.27 | 13.17 | 67.37 | 4.90 | 10.08 | 66.83 | 5.21 | 9.76 | 66.98 | 4.84 | 11.10 |
L‑MK及NHL改性土经历20次干湿循环后与原样遗址土的色差值见
Sample | ΔE | |||
---|---|---|---|---|
6%L+0%MK | 69.23 | 4.97 | 8.82 | 9.82 |
6%L+4%MK | 63.85 | 7.54 | 14.06 | 3.12 |
6%L+8%MK | 65.20 | 7.95 | 15.26 | 2.31 |
6%L+12%MK | 65.61 | 9.13 | 13.62 | 4.35 |
8%L+0%MK | 64.39 | 5.14 | 11.26 | 6.10 |
8%L+4%MK | 64.86 | 7.22 | 13.14 | 4.02 |
8%L+8%MK | 66.64 | 8.16 | 15.15 | 3.29 |
8%L+12%MK | 66.63 | 8.89 | 11.21 | 6.64 |
8%NHL | 64.30 | 5.77 | 12.17 | 5.06 |
10%NHL | 66.98 | 4.84 | 11.10 | 6.88 |
(6) |
(7) |

图5 试样8%L+8%MK和8%NHL经历0、10、20次干湿循环后的XRD图谱
Fig.5 XRD patterns of sample 8%L+8%MK and 8%NHL after 0, 10, 20 dry‑wet cycles
随着干湿循环作用持续进行,试样8%L+8%MK和8%NHL中CSH等水化产物相应衍射峰强度出现波动.试样8%L+8%MK在10次干湿循环时的衍射峰较循环前更显著,而试样8%NHL则呈现减弱趋势.同时,试样8%L+8%MK和8%NHL因酸性环境的侵蚀,导致Ca(OH)2等结晶相大量减少,生成大量膨胀性物质CaSO4·2H2O;当循环次数增加至20次时,膨胀性物质生成量达到最高值.即酸性环境下试样强度变化规律主要是由于Si‑Al体系和C
采用扫描电镜对经历0、10、20次干湿循环后的试样8%L+8%MK和8%NHL进行微观结构扫描,结果见

图6 试样8%L+8%MK和8%NHL的SEM图片
Fig.6 SEM images of sample 8%L+8%MK and 8%NHL

图7 试样8%L+8%MK和8%NHL的TG曲线
Fig.7 TG curves of sample 8%L+8%MK and 8%NHL
(1)随着酸环境下干湿循环次数的增加,L‑MK改性遗址土的无侧限抗压强度和劈裂抗拉强度均呈现先增加后减小的变化规律,NHL改性遗址土的强度则单调减小.经过20次干湿循环后,L‑MK改性遗址土的强度仍显著高于NHL改性遗址土,L‑MK改性遗址土的抗酸侵蚀特性优于NHL改性遗址土.
(2)与原样遗址土相比,L‑MK改性遗址土在经历20次干湿循环后色差值ΔE随着偏高岭土掺量的增加而先减后增,当MK掺量为8%时达到最低值,色差在可察觉-可识别阶段;而NHL改性遗址土试样向蓝色调偏移,黄色调减弱,颜色逐步偏离原样遗址土,色差已达到人眼可识别-易识别阶段.
(3)在SO和
(4)基于酸环境下的干湿循环耐久性,综合考虑试样力学强度、色差及微观机理等,采用L‑MK替代NHL应用于土遗址修复领域是可行的.
参考文献
李黎, 赵林毅, 王金华, 等. 我国古代建筑中两种传统硅酸盐材料的物理力学特性研究[J]. 岩石力学与工程学报,2011,30(10):2120‑2127. [百度学术]
LI Li, ZHAO Linyi, WANG Jinhua, et al. Research on physical and mechanical characteristics of two traditional silicate material in Chinese ancient buildings[J]. Chinese Journal of Rock Mechanics and Engineering,2011, 30(10):2120‑2127. (in Chinese) [百度学术]
LANAS J, BERNAL J L P, BELLO M A, et al. Mechanical properties of natural hydraulic lime‑based mortars[J]. Cement and Concrete Research, 2004, 34(12):2191‑2201. [百度学术]
李新明, 路广远, 张浩扬, 等. 石灰偏高岭土改良粉砂土强度特性与微观机理[J]. 建筑材料学报, 2021, 24(3): 648‑655. [百度学术]
LI Xinming, LU Guangyuan, ZHANG Haoyang, et al. Strength characteristics and micro‑mechanism of lime‑metakaolin modified silty soil[J]. Journal of Building Materials, 2021, 24(3):648‑655. (in Chinese) [百度学术]
董晓强, 苏楠楠, 黄新恩, 等. 污水浸泡对水泥土强度和电阻率特性影响的试验研究[J]. 岩土力学, 2014, 35(7):1855‑1862, 1870. [百度学术]
DONG Xiaoqiang, SU Nannan, HUANG Xin’ en, et al. Effect of sewage on electrical resistivity and strength of cemented soil[J]. Rock and Soil Mechanics, 2014, 35(7):1855‑1862, 1870. (in Chinese) [百度学术]
BAKHSHIPOUR Z, ASADI A, HUAT B B K, et al. Effect of acid rain on geotechnical properties of residual soils[J]. Soils and Foundations, 2016, 56(6):1008‑1020. [百度学术]
ACHARYA P K,PATRO S K. Acid resistance, sulphate resistance and strength properties of concrete containing ferrochrome ash(FA) and lime[J]. Construction and Building Materials, 2016, 120:241‑250. [百度学术]
黄伟, 汪时机, 程明书, 等. 水泥改性膨胀土在侵蚀环境下的干湿循环效应研究[J]. 硅酸盐通报, 2018, 37(2):649‑659. [百度学术]
HUANG Wei, WANG Shiji, CHENG Mingshu, et al. Effect of dry wet cycle on cement modified expansive soil under erosion environment[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(2):649‑659. (in Chinese) [百度学术]
赵宇, 崔鹏, 胡良博. 黏土抗剪强度演化与酸雨引发滑坡的关系—以三峡库区滑坡为例[J]. 岩石力学与工程学报, 2009, 28(3):576‑582. [百度学术]
ZHAO Yu, CUI Peng, HU Liangbo. Relation between evolution of clay shear strength and landslide induced by acid rain‑taking landslides in three gorges reservoir area for example[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(3):576‑582. (in Chinese) [百度学术]
常锦,杨和平,肖杰,等. 酸雨湿干循环作用下百色膨胀土裂隙发育规律及其微观机制[J]. 中国公路学报, 2021, 34(1):47‑56. [百度学术]
CHANG Jin, YANG Heping, XIAO Jie, et al. Fissure development law and micro‑mechanism of Baise expansive soil under wet‑dry cycle of acid rain[J]. Chinese Journal of Highway and Transport, 2021, 34(1):47‑56. (in Chinese) [百度学术]
YE W J, WU Y T, BAI Y. Study of macro‑ and mesodamage of remolded loess under alternating dry and wet conditions in an acid rain environment[J]. Advance in Materials Science and Engineering, 2021: 5158150. [百度学术]
SATA V, SATHONSAOWAPHAK A, CHINDAPRASIRT P. Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack[J]. Cement and Concrete Composites, 2012, 34(5):700‑708. [百度学术]
李迎春, 石亮, 黄安永,等. 酸-硫酸盐耦合侵蚀环境下水泥基材料耐久性提升技术作用效果分析[J]. 混凝土, 2016(6):73‑76. [百度学术]
LI Yingchun, SHI Liang, HUANG Anyong, et al. Effect of durability improvement technical for cement‑based materials under acid‑sulfate coupled erosion conditions[J]. Concrete, 2016(6):73‑76. (in Chinese) [百度学术]
CHEN X, SHAN X R, SHI Z J, et al. Analysis of the Spatio‑temporal changes in acid rain and their causes in China(1998‑2018)[J]. Journal of Resources and Ecology, 2021, 12(5):593‑599. [百度学术]
任克彬.古城寨遗址粉土力学性状的干湿循环效应与城墙响应特征[D]. 郑州: 郑州大学, 2019. [百度学术]
REN Kebin. Effects of dry‑wet cycle on silt mechanical properties of Guchengzhai and response characteristics of the wall[D]. Zhengzhou: Zhengzhou University, 2019. (in Chinese) [百度学术]
DUAN P, YAN C J, ZHOU W. Influence of partial replacement of fly ash by metakaolin on mechanical properties and microstructure of fly ash geopolymer paste exposed to sulfate attack[J]. Ceramics International, 2016, 42(2):3504‑3517. [百度学术]
CHEN M C, WANG K, XIE L. Deterioration mechanism of cementitious materials under acid rain attack[J]. Engineering Failure Analysis, 2013, 27(1):272‑285. [百度学术]
ALCAMAND H A, BORGES P H R, SILVA F A, et al. The effect of matrix composition and calcium content on the sulfate durability of metakaolin and metakaolin/slag alkali‑activated mortars[J]. Ceramics International, 2017, 44(5):5037‑5044. [百度学术]
周永祥, 阎培渝. 固化盐渍土经干湿循环后力学性能变化的机理[J]. 建筑材料学报,2006,9(6):735‑741. [百度学术]
ZHOU Yongxiang, YAN Peiyu. Mechanism of alteration in mechanical property of solidified saline soil affected by wetting‑drying cycles[J]. Journal of Building Materials, 2006,9(6):735‑741. (in Chinese) [百度学术]
张金风. 土遗址化学加固保护中色差的评定问题[J]. 中国文物科学研究, 2016(4):51‑57. [百度学术]
ZHANG Jinfeng. Discussion on color difference by chemical consolidation on earthen sites[J]. China Cultural Heritage Scientific Research, 2016(4):51‑57. (in Chinese) [百度学术]
徐菲, 韦华, 钱文勋, 等. 水泥土组成矿物的热重-热力学模拟联用分析[J]. 建筑材料学报, 2022, 25(4):424‑433. [百度学术]
XU Fei, WEI Hua, QIAN Wenxun, et al. Compositional minerals of cemented soil by combined thermogravimetry and thermodynamic modelling[J]. Journal of Building Materials, 2022, 25(4):424‑433. (in Chinese) [百度学术]
GAMEIRO A, SANTOS SILVA A, VEIGA R, et al. Hydration products of lime‑metakaolin pastes at ambient temperature with ageing[J]. Thermochimica Acta, 2012, 535:36‑41. [百度学术]