摘要
采用高吸水性树脂(SAP)作为混凝土内养护材料,通过纳米压痕试验,研究了养护龄期和SAP掺量对内养护混凝土孔洞界面微观力学的影响,借助扫描电镜与能谱分析(SEM‑EDS)表征混凝土的内部物相及化学组成.结果表明:随着养护龄期的增加,SAP释水界面的弹性模量和硬度提高;掺入SAP后,混凝土中的水化产物分布更加均匀;随着养护龄期的增加,水化产物含量逐渐增大,界面更加致密;SEM‑EDS测试结果与力学性能相吻合,说明SAP对高强混凝土具有积极影响.
内养
本文从量化内养护混凝土微观力学特性,研究其与宏观力学特性间的关系入手,采用纳米压痕技术探究混凝土掺入SAP后释水界面的硬度和弹性模量,同时利用扫描电镜与能谱分析(SEM‑EDS)探测材料的物相及分布特征,将微观表征技术与材料性能相匹配,以实现内养护混凝土材料微观物相的划分及微观性质的直接测量.
水泥采用P·O 42.5普通硅酸盐水泥;粗骨料为碎石,粒径为5~20 mm,连续级配,其物理性质见
Project | Apparent density/ (kg· | Bulk density/ (kg· | Void ratio(by volume)/% | Mud content(by mass)/% | Water absorption(by mass)/% |
---|---|---|---|---|---|
Standard | >2 500 | >1 350 | <47 | <0.5 | |
Measured | 2 640 | 1 720 | 40 | — | 1.2 |
Material | SO3 | SiO2 | Fe2O3 | Al2O3 | CaO | MgO | K2O | Na2O |
---|---|---|---|---|---|---|---|---|
Cement | 2.46 | 24.13 | 3.65 | 9.25 | 51.27 | 4.98 | 0.79 | 1.95 |
Slag | 32.83 | 1.09 | 14.44 | 41.05 | 6.44 | |||
Fly ash | 0.42 | 50.25 | 5.35 | 34.20 | 4.50 | 0.50 | 1.20 | 0.80 |
Silica fume | 90.48 | 1.87 | 1.27 | 2.59 | 0.91 |
混凝土的配合比见
No. | Cement | Slag | Fly ash | Silica fume | Water | Sand | Coarse aggregate | SAP (dry weight) | Pre‑water absorption | Water reducing agent |
---|---|---|---|---|---|---|---|---|---|---|
HSC | 371.2 | 79.6 | 53.0 | 26.4 | 180.0 | 625.0 | 1 065.0 | 0 | 0 | 0.5 |
HSC10 | 371.2 | 79.6 | 53.0 | 26.4 | 180.0 | 625.0 | 1 065.0 | 1.6 | 32.0 | 0.5 |
先通过纳米压痕试验对不同养护龄期的内养护混凝土力学性能展开研究,再运用SEM‑EDS工具研究材料的物相及分布特征.采用6×6点阵(间距为40)对试样进行纳米压痕试验,打点位置如

图2 试样压痕试验区域照片
Fig.2 Photographs of indentation test area of samples
以试样HSC10为研究对象,为确保试验数据的可靠性,对养护龄期分别为3、7 d时的试样各进行3组,共6组纳米压痕试验,对比不同养护龄期对内养护混凝土的养护效果.由于微观试验精度要求较高,试验环境等影响会产生无效数据,选取6组试验中无效点占比最少的数据.本试验所选用的2组纳米压痕数据中无效点数分别为3个和2个,占总压痕点数的8.3%和5.6%,数据合理可靠.
将纳米压痕结果绘制为弹性模量与硬度分布云图,如

图3 内养护混凝土的弹性模量与硬度分布云图
Fig.3 Elastic modulus and hardness distribution cloud maps of internal curing concrete

图4 混凝土中SAP释水过程示意图
Fig.4 Schematic of water release process of SAP in concrete
根据纳米压痕试验,分别统计了3、7 d养护龄期下3组试样的测试结果,通过计算孔隙、未水化物、水化产物C‑S‑H和Ca(OH)2在纳米压痕有效测区的面积占比(以下均为平均值)可知:随着养护龄期的增加,试样孔隙率由19.4%下降到13.9%,总体下降5.5%;3 d龄期时未水化颗粒体积分数为13.9%,7 d龄期时未水化颗粒体积分数为8.3%,总体减小5.6%;水化产物C‑S‑H在3 d龄期时体积分数为50.0%,7 d龄期时体积分数为66.7%,总体增加了16.7%;当养护龄期为3 d时,水化产物Ca(OH)2的体积分数为16.7%,龄期为7 d时体积分数为11.1%,减小了5.6%,养护龄期的增加使得Ca(OH)2含量减少.以上表明,随着养护龄期的增加,试样内水化界面逐渐致密,减少了SAP释水产生的孔隙数量,补偿了原本薄弱的SAP与水泥基体之间的界面.
为探究内养护混凝土中不同水化产物元素含量的规律,通过EDS扫描得到不同水化产物元素含量及分布规律,如

图5 不同养护龄期下试样HSC10的EDS图谱
Fig.5 EDS spectra of sample HSC10 at different curing ages
选取7 d养护龄期时的试样HSC和HSC10进行纳米压痕试验,并将试验数据绘制成云图,如

图6 试样HSC和HSC10的弹性模量及硬度分布云图
Fig.6 Elastic modulus and hardness distribution cloud maps of sample HSC and HSC10
由

图7 试样HSC和HSC10的SEM照片(7 d养护龄期)
Fig.7 SEM images of sample HSC and HSC10(curing age is 7 d)
为观察内养护材料SAP释水后界面周围的水化情况,对试样HSC和HSC10进行EDS线扫描,图谱见

图8 试样HSC与HSC10的EDS图谱
Fig.8 EDS spectra of sample HSC and HSC10
综上所述,掺入内养护材料SAP的试样HSC10总体上元素分布较试样HSC更加均匀,水化产物含量增大,孔洞界面更加紧密,进一步说明内养护材料SAP的掺入对高强混凝土的力学性能有积极影响.
(1)随着养护龄期的增加,内养护混凝土中的凝胶产物含量增大.在水化反应作用下,随着压痕点与SAP孔隙点之间横向距离的增大,混凝土的弹性模量及硬度均出现逐渐增大的趋势,表明随着水化程度的加深,内养护混凝土中各物相的弹性模量和硬度有一定增长.
(2)掺入SAP后,混凝土内C‑S‑H凝胶等水化产物含量增加,水化生成物的逐渐沉积促使SAP孔隙面积减小,SAP孔洞周围界面结构更加致密,改善了多孔、多裂隙结构.
(3)随着SAP材料促进孔洞界面的水化反应,水化产物含量较未掺SAP的混凝土试样明显增多,说明SAP的掺入对混凝土内部水化反应具有积极作用,对高强度混凝土的抗压性和耐久性有明显改善.
参考文献
DHIR R K, HEWLETT P C,LOTA J S, et al. An investigation into the feasibility of formulating ‘self‑cure’ concrete[J].Materials and Structures, 1994, 27(10):606‑615. [百度学术]
王立成,张磊. 混凝土内养护技术研究进展[J]. 建筑材料学报, 2020, 23(6):1471‑1478. [百度学术]
WANG Licheng, ZHANG Lei. Research progress on concrete internal curing technology[J].Journal of Building Materials, 2020, 23(6):1471‑1478. (in Chinese) [百度学术]
申爱琴,杨景玉,郭寅川,等. SAP内养生水泥混凝土综述[J].交通运输工程学报, 2021, 21(4):1‑31. [百度学术]
SHEN Aiqin, YANG Jingyu, GUO Yinchuan, et al. Review on cement concrete internally cured by SAP[J].Journal of Traffic and Transportation Engineering, 2021, 21(4):1‑31. (in Chinese) [百度学术]
郭利霞,张芳芳,王明华,等. 内养护高强混凝土自收缩性能研究[J].结构工程师, 2021, 37(3):145‑150. [百度学术]
GUO Lixia, ZHANG Fangfang, WANG Minghua, et al. Study on shrinkage properties of high strength concrete with silica fume internal curing[J]. Structural Engineers, 2021, 37(3):145‑150. (in Chinese) [百度学术]
吴庆,朱袁洁,许耀,等. 基于SEM和XRD微观测试下单掺矿物掺合料透水混凝土性能分析[J]. 江苏科技大学学报(自然科学版), 2020, 34(3):112‑118. [百度学术]
WU Qing, ZHU Yuanjie, XU Yao, et al. Performance analysis of permeable concrete with single mineral admixture based on SEM and XRD micro‑tests[J]. Journal of Jiangsu University of Science and Technology ( Natural Science), 2020, 34(3):112‑118. (in Chinese) [百度学术]
丁小平,张君,韩宇栋,等. 考虑内养护剂动态释水的混凝土自干燥计算模型[J]. 建筑材料学报, 2022, 25(3):242‑247. [百度学术]
DING Xiaoping, ZHANG Jun, HAN Yudong, et al. Calculation model of concrete self‑desiccation considering dynamic water release of internal curing agent[J]. Journal of Building Materials, 2022, 25(3):242‑247. (in Chinese) [百度学术]
胡传林,李宗津,王发洲. 混凝土微观力学基础研究进展及应用展望[J].工程力学, 2021, 38(4):1‑7,92. [百度学术]
HU Chuanlin, LI Zongjin, WANG Fazhou. Progress and application prospect on fundamental research on concrete micromechanics[J].Engineering Mechanics, 2021, 38(4):1‑7,92. (in Chinese) [百度学术]
ZHANG J L,ZAEFFERER S. Influence of sample preparation on nanoindentation results of twinning‑induced plasticity steel[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(5):877‑887. [百度学术]
CONSTANTINIDES G, ULM F J, VAN VLIET K. On the use of nanoindentation for cementitious materials[J]. Materials and Structures, 2003, 36(257):191‑196. [百度学术]
盖海东,冯春花,董一娇,等. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7):7107‑7114. [百度学术]
GAI Haidong, FENG Chunhua, DONG Yijiao, et al. A review on the application of nanoindentation in the research of cement‑based materials [J]. Materials Reports, 2020, 34(7):7107‑7114. (in Chinese) [百度学术]
CONSTANTINIDES G ,RAVI CHANDRAN K S , ULM F J, et al. Grid indentation analysis of composite microstructure and mechanics:Principles and validation[J]. Materials Science & Engineering A, 2006,430(1/2):189‑202. [百度学术]
周伟玲,孙伟,陈翠翠,等. 应用纳米压痕技术表征水泥基材料微观力学性能[J]. 东南大学学报(自然科学版), 2011, 41(2):370‑375. [百度学术]
ZHOU Weiling, SUN Wei, CHEN Cuicui, et al. Characterization for micro mechanical properties of cementitious materials by nanoindentation technique[J].Journal of Southeast University(Natural Science), 2011, 41(2):370‑375. (in Chinese) [百度学术]
高岳毅,张亚梅,胡传林,等. 用纳米压痕复合扫描电子显微镜分析水泥砂浆中单一组相的力学性能[J].硅酸盐学报, 2012, 40(11):1559‑1563. [百度学术]
GAO Yueyi, ZHANG Yamei, HU Chuanlin, et al. Nanomechanical properties of individual phases in cement mortar analyzed using nanoindentation coupled with scanning electron microscopy[J]. Journal of the Chinese Ceramic Society, 2012, 40(11):1559‑1563. (in English) [百度学术]
华培成. 水泥基材料微观力学性能的纳米压痕表征与多相分析[D]. 上海:上海交通大学, 2019. [百度学术]
HUA Peicheng. Micromechanical properties of cementtitious materials characterized by nanoindentation and multiphasic analysis[D]. Shanghai:Shanghai Jiao Tong University, 2019. (in Chinese) [百度学术]
BENHIBA F, BENZEKRI Z, GUENBOUR A, et al. Combined electronic/atomic level computational, surface(SEM/EDS),chemical and electrochemical studies of the mild steel surface by quinoxalines derivatives anti‑corrosion properties in 1 mol·
孔德军,王进春,郭皓元,等. 阴极弧离子镀TiCN涂层的SEM‑EDS面扫描与线扫描分析[J]. 稀有金属材料与工程, 2015, 44(12):3000‑3004. [百度学术]
KONG Dejun, WANG Jinchun, GUO Haoyuan, et al. SEM‑EDS plane scan and line scan analysis of TiCN coatings by cathodic arc ion plating[J]. Rare Metal Materials and Engineering, 2015, 44(12):3000‑3004. (in Chinese) [百度学术]