摘要
为研究形状记忆合金(SMA)/聚乙烯醇(PVA)混杂纤维增强水泥基复合材料(SMA/PVA‑ECC)的拉伸性能,开展单轴拉伸试验,分析了SMA/PVA‑ECC试件的破坏现象、应力-应变曲线及特征参数,比较了SMA纤维掺量及其直径对试件拉伸性能的影响.结果表明:SMA/PVA‑ECC试件卸载后残余裂缝宽度显著减小;SMA纤维掺量及其直径对试件拉伸性能影响显著,当SMA纤维直径为0.2 mm、掺量为0.2%时,试件综合拉伸性能最好,其初裂强度、极限拉伸应力及应变较工程水泥基复合材料(ECC)试件分别提高56.4%、23.6%及13.4%.
通过在水泥基体中掺入特定类型和性能的短纤维制备而成的工程水泥基复合材料(ECC),具有多缝开裂及应变硬化等特性,且其极限拉应变可达普通混凝土的数百
形状记忆合金(SMA)具有独特的形状记忆效应及超弹性特性,恢复塑性变形量可达初始长度的14
将超弹性SMA与ECC相结合,不仅能够利用SMA的旗形滞回耗能特性提升复合材料的耗能能力,而且SMA卸载后的变形回复力可为ECC提供裂缝闭合及变形自复位能力,在自复位抗震结构中具有广阔应用前景.与SMA线材或筋材相比,SMA纤维无须特殊连接锚固.将SMA纤维用于ECC且两者充分粘结或锚固时,SMA纤维应力随着ECC基体受力的增大而增大,可引发SMA材料相变,激发超弹性,从而产生较大应变及旗形滞回耗能特征,使ECC具有优异的耗能能力;同时,卸载后又能产生回复力,带动裂缝闭合和ECC材料变形恢复;且随机分布的SMA纤维可在任意方向为ECC提供闭合裂缝及恢复变形能
当前,关于SMA/PVA混杂纤维增强水泥基复合材料(SMA/PVA‑ECC)基本力学性能的相关研究还十分匮乏.鉴于此,本文针对SMA/PVA‑ECC的拉伸力学性能开展研究,通过单轴拉伸试验,研究了应力-应变曲线和SMA纤维掺量(体积分数)及其直径对SMA/PVA‑ECC拉伸性能及开裂形态的影响.
ECC原材料包括:P·I 52.5硅酸盐水泥;Ⅰ级优质粉煤灰,密度为2.55 g/c
综合文献[
Mix proportion/kg | φ(PVA fiber)/% | ||||
---|---|---|---|---|---|
Cement | Fly ash | Quartz sand | Water | Water reducer | |
1.000 0 | 4.000 0 | 0.200 0 | 0.220 0 | 0.007 9 | 2 |
通过直接拉伸试验得到ECC材料的应力-应变曲线,如

图1 ECC的应力-应变曲线
Fig.1 Stress‑strain curve of ECC
SMA纤维原材料为SMA丝,江阴仁昌镍钛新材料有限公司产,密度为6.49 g/c

图2 SMA纤维的应力-应变曲线
Fig.2 Stress‑strain curve of SMA fiber
采用单轴拉伸试验来研究SMA/PVA‑ECC的拉伸力学性能及影响因素.拉伸试件形状设计为狗骨形,其尺寸示意图见

图3 拉伸试件尺寸示意图
Fig.3 Dimension diagram of tensile specimen (size:mm)

图4 SMA纤维端头设计
Fig.4 End design of SMA fiber (size:mm)
Specimen No. | SMA fiber diameter/mm | φ(SMA fiber)/% | φ(PVA fiber)/% | Number of specimen |
---|---|---|---|---|
ECC | 0 | 2 | 3 | |
S‑0.2‑0.2 | 0.2 | 0.2 | 2 | 3 |
S‑0.2‑0.3 | 0.2 | 0.3 | 2 | 3 |
S‑0.2‑0.4 | 0.2 | 0.4 | 2 | 3 |
S‑0.5‑0.2 | 0.5 | 0.2 | 2 | 3 |
S‑0.5‑0.3 | 0.5 | 0.3 | 2 | 3 |
S‑0.5‑0.4 | 0.5 | 0.4 | 2 | 3 |
S‑1.0‑0.2 | 1.0 | 0.2 | 2 | 3 |
S‑1.0‑0.3 | 1.0 | 0.3 | 2 | 3 |
S‑1.0‑0.4 | 1.0 | 0.4 | 2 | 3 |
首先将各粉状材料(水泥、粉煤灰、石英砂和减水剂)倒入JJ‑5型水泥砂浆搅拌机中,干拌2 min至分散均匀;然后加入部分拌和水,先低速搅拌1 min,观察拌和物和易性,再加入剩余拌和水,继续搅拌1 min,待拌和物具有良好流动性后分批次掺入PVA纤维,高速搅拌3 min;接着在拌和物中分批次撒入SMA纤维,将其搅拌均匀,倒入模具中,24 h后脱模;最后将试件置于标准养护箱((20±2)℃且相对湿度95%以上)中养护28 d.需要说明的是,本试验主要保证SMA纤维在试件有效拉伸区轴拉方向上均匀分布.
采用WD‑PD6305万能试验机开展单轴拉伸试验.为避免试件与试验机夹具因直接接触引起的应力集中导致试件局压发生破坏,同时防止试件偏心受拉,设计并制作了专门固定狗骨形试件的拉伸夹具.为了使上下夹持端与试验机能够稳定连接,对上下夹持端表面进行了45°倾斜划痕打磨处理.试验采用位移控制加载,加载速率为0.5 mm/min,荷载和位移均由试验机自动记录.应力与应变取试件实际尺寸进行计算.待试件出现1条明显主裂缝并发生应变软化后即停止加载.

图5 单轴拉伸试验装置及拉伸夹具示意图
Fig.5 Uniaxial tension test device and schematic diagram of stretching fixture

图6 试件破坏形态
Fig.6 Failure modes of specimens
本试验选取每组试件中最具代表性的应力-应变曲线进行对比分析.

图7 ECC试件和SMA/PVA‑ECC试件的应力-应变曲线
Fig.7 Stress‑strain curves of ECC specimen and SMA/PVA‑ECC specimens
试验研究了相同SMA纤维直径条件下,SMA纤维掺量对SMA/PVA‑ECC试件应力-应变曲线的影响,结果见

图8 相同SMA纤维直径条件下SMA纤维掺量对SMA/PVA‑ECC试件应力-应变曲线的影响
Fig.8 Effect of SMA fiber content on the stress‑strain curves of SMA/PVA‑ECC specimens with the same SMA fiber diameter
试验研究了相同SMA纤维掺量条件下,SMA纤维直径对SMA/PVA‑ECC试件应力-应变曲线的影响,结果见

图9 相同SMA纤维掺量条件下SMA纤维直径对SMA/PVA‑ECC试件应力-应变曲线的影响
Fig.9 Effect of SMA fiber diameter on the stress‑strain curves of SMA/PVA‑ECC specimens with the same SMA fiber content
试件拉伸应力-应变曲线的特征参数见
Specimen No. | Initial cracking strength/MPa | Initial cracking strain/% | Ultimate tensile stress/MPa | Ultimate tensile strain/% |
---|---|---|---|---|
ECC | 2.04 | 0.26 | 4.24 | 5.23 |
S‑0.2‑0.2 | 3.19 | 0.33 | 5.24 | 5.93 |
S‑0.2‑0.3 | 3.15 | 0.56 | 4.30 | 4.01 |
S‑0.2‑0.4 | 3.57 | 0.48 | 4.68 | 3.83 |
S‑0.5‑0.2 | 2.71 | 0.32 | 3.43 | 3.56 |
S‑0.5‑0.3 | 2.35 | 0.23 | 4.09 | 4.10 |
S‑0.5‑0.4 | 2.05 | 0.21 | 4.88 | 4.89 |
S‑1.0‑0.2 | 2.07 | 0.47 | 3.36 | 3.83 |
S‑1.0‑0.3 | 2.23 | 0.14 | 3.81 | 4.32 |
S‑1.0‑0.4 | 2.39 | 0.23 | 3.31 | 3.91 |
由于打结形端头可为SMA纤维和ECC基体提供充分的锚固力,因此假设SMA纤维打结形端头与ECC基体之间没有相对滑移.对于任意单根SMA纤维,其受拉变形后的纤维长度可取其初始长度与基体裂缝宽度W之和.SMA纤维变形示意图如

图10 SMA纤维变形示意图
Fig.10 Schematic diagram of SMA fiber deformation
此时SMA纤维应变可采用
(1) |
依据
Specimen No. | W/mm | εf/% |
---|---|---|
S‑0.2‑0.2 | 2.51 | 6.28 |
S‑0.2‑0.3 | 2.42 | 6.05 |
S‑0.2‑0.4 | 2.39 | 5.98 |
S‑0.5‑0.2 | 2.64 | 6.60 |
S‑0.5‑0.3 | 2.82 | 7.05 |
S‑0.5‑0.4 | 2.70 | 6.75 |
S‑1.0‑0.2 | 2.97 | 7.43 |
S‑1.0‑0.3 | 3.25 | 8.13 |
S‑1.0‑0.4 | 3.21 | 8.03 |
Note: All data in the table are average values.
(1)端头打结形SMA纤维与ECC之间具有良好锚固性能,SMA纤维可有效发挥超弹性特性.卸载后,SMA/PVA‑ECC试件微裂缝能够得到有效闭合,主裂缝残余宽度显著减小.
(2)SMA/PVA‑ECC试件的应力-应变曲线表现出3阶段发展过程,且具有明显应变硬化特征;SMA纤维提高了SMA/PVA‑ECC试件的初裂强度及部分试件的极限拉伸应力;达到峰值应力后,SMA/PVA‑ECC试件的应力退化较ECC试件缓慢,但其极限应变大多低于ECC试件.
(3)SMA纤维的直径和掺量对SMA/PVA‑ECC试件的拉伸性能影响显著.小直径的SMA纤维掺量越小,试件的拉伸性能越好;而大直径的SMA纤维掺量只有适中时,试件的拉伸性能才较好.当SMA纤维掺量较低时,纤维直径小的试件拉伸性能更好;当SMA纤维掺量超过一定值后,纤维直径中等的试件拉伸性能较好.SMA纤维直径为0.2 mm、掺量为0.2%时试件的综合拉伸性能最好,其初裂强度、极限拉伸应力及应变较ECC试件分别提高56.4%、23.6%及13.4%.
参考文献
姚淇耀,陆宸宇,罗月静,等.PE/PVA纤维海砂ECC的拉伸性能与本构模型[J].建筑材料学报,2022,25(9):976‑983. [百度学术]
YAO Qiyao, LU Chenyu, LUO Yuejing, et al. Tensile properties and constitutive model of PE/PVA fiber sea sand ECC[J].Journal of Building Materials,2022,25(9):976‑983. (in Chinese) [百度学术]
周建伟,余保英,孔亚宁,等.PVA纤维增韧工程水泥基复合材料在屋面防水工程中的应用研究[J].新型建筑材料,2021,48(10):138‑141,156. [百度学术]
ZHOU Jianwei,YU Baoying,KONG Yaning,et al. Research on application of PVA fiber toughened engineered cementitious composite in roof waterproof engineering[J].New Building Materials,2021,48(10):138‑141,156. (in Chinese) [百度学术]
刘曙光,常智慧,张栋翔,等.PVA‑ECC材料在桥梁伸缩缝工程中的应用[J].混凝土与水泥制品,2016(2):80‑82. [百度学术]
LIU Shuguang,CHANG Zhihui,ZHANG Dongxiang,et al. Application of PVA‑ECC material in bridge expansion joint engineering[J] China Concrete and Cement Products,2016(2):80‑82. (in Chinese) [百度学术]
王振波,张君.混杂纤维水泥基复合材料力学性能研究进展[J].混凝土,2018(4):65‑69. [百度学术]
WANG Zhenbo,ZHANG Jun. Research advance in mechanical behavior of hybrid fiber reinforced cementitious composites[J]. Concrete,2018(4):65‑69. (in Chinese) [百度学术]
DEHGHANI A, ASLANI F. Crack recovery and re‑centring performance of cementitious composites with pseudoelastic shape memory alloy fibres[J]. Construction and Building Materials, 2021, 298:123888. [百度学术]
ANDRAWES B,DESROCHES R. Unseating prevention for multiple frame bridges using superelastic devices[J]. Smart Materials and Structures,2005,14(3):S60. [百度学术]
LI X P, LI M, SONG G B. Energy‑dissipating and self‑repairing SMA‑ECC composite material system[J]. Smart Materials and Structures,2015,24(2):025024. [百度学术]
DIZAJI F S, DIZAJI M S. Seismic performance assessment of steel frames upgraded with shape memory alloy re‑centering dampers for passive protection of structures subjected to seismic excitations using high‑performance NiTiHfPd material[J]. Smart Materials and Structures,2022,31(6):065004. [百度学术]
ZHOU X H, KE K, YAM M C H, et al. Shape memory alloy plates:Cyclic tension‑release performance, seismic applications in beam‑to‑column connections and a structural seismic demand perspective[J]. Thin‑Walled Structures,2021,167:108158. [百度学术]
INDHUMATHI S, DINESH A, PICHUMANI M. Diverse perspectives on self healing ability of engineered cement composite‑all‑inclusive insight[J]. Construction and Building Materials,2022,323:126473. [百度学术]
ALI M A E M, SOLIMAN A M, NEHDI M L. Hybrid‑fiber reinforced engineered cementitious composite under tensile and impact loading[J]. Materials & Design,2017,117:139‑149. [百度学术]
ALI M A E M, NEHDI M L. Experimental investigation on mechanical properties of shape memory alloy fibre‑reinforced ECC composite[C]//The International Conference on Civil and Architecture Engineering. Cairo: Military Technical College, 2016,11:1‑11. [百度学术]
KHAKIMOVA E, SHERIF M M, OZBULUT O E, et al. Experimental investigations on shape memory alloy fiber reinforced concrete[C]//6th International Conference on Advances in Experimental Structural Engineering, 11th International Workshop on Advanced Smart Materials and Smart Structures Technology. Urbana‑Champaign: University of Illinois, Urbana‑Champaign, United States. 2015. [百度学术]
SHERIF M M, KHAKIMOVA E M, TANKS J, et al. Cyclic flexural behavior of hybrid SMA/steel fiber reinforced concrete analyzed by optical and acoustic techniques[J]. Composite Structures,2018,201:248‑260. [百度学术]