摘要
通过高速纳米压痕技术测绘了3种水灰比(0.2、0.4和0.6)水泥净浆的弹性模量与硬度云图,引进K‑medoids聚类分析方法划分水泥基材料的微观矿相,根据K‑medoids聚类结果将力学性能图转化为矿相分布图,并对矿相的尺寸分布进行了统计分析.结果表明:水泥基材料主要包括多孔复合相(PP)、低密度/高密度C‑S‑H相(LD/HD C‑S‑H)、氢氧化钙相(CH)和超高性能相(UHP)等;随着水灰比的增加,PP、LD C‑S‑H的含量逐渐增加,HD C‑S‑H、UHP的含量逐渐减少;水泥石微观矿相的尺寸符合对数正态分布.
水泥基材料具有非均质性和多尺度的特
纳米压痕技
基于纳米压痕的矿相分析通常采用解卷积方
本文首先通过高速纳米压痕绘图技术,测绘了3种水灰比(质量比,文中涉及的水灰比、组成等除特别说明外均为质量比或质量分数)水泥净浆的弹性模量和硬度云图;然后,采用K‑medoids聚类分析识别水泥净浆中的主要微观矿相,获得矿相分布图;最后,通过灰度统计方法分析各相的尺寸分布.
由普通P·O 42.5硅酸盐水泥制备水泥净浆试块,水灰比(mW/mC)分别为0.2、0.4和0.6.在标准养护条件 ((20±2) ℃、RH≥95%)下养护28 d后进行纳米压痕试验.P·O 42.5水泥的主要化学组成如
SiO2 | CaO | SO3 | Al2O3 | Fe2O3 | MgO | Na2O | K2O | Total |
---|---|---|---|---|---|---|---|---|
22.75 | 50.56 | 0.79 | 10.38 | 10.37 | 1.02 | 0.73 | 1.31 | 97.91 |

图1 P·O 42.5水泥的粒径分布
Fig.1 Particle size distribution of P·O 42.5 cement
纳米压痕试验通过特定形状的压头压入材料表面,测量压入荷载-压入深度(F‑h)曲线,基于接触力学分析材料的微观力学性能,计算其接触约化模量(Er)和压痕硬度(H
(1) |
(2) |
(3) |
式中:β是与压头形状有关的无量纲修正系数,当使用Berkovich压头时,β =1.05;S是压痕卸载刚度, N/m;Ac为最大压入深度(hmax)处的接触面积,n
对于各向同性的均质材料,Er可根据
(4) |
式中:v为被测材料的泊松比;E为被测材料的弹性模量,GPa;vi为压头的泊松比;Ei为压头的弹性模量,GPa.
首先,将养护至28 d的水泥净浆试样切割成10 mm的小块,放入异丙醇中浸泡2 d以终止其水化;然后,用环氧树脂进行镶嵌.高速高分辨率的纳米压痕力学绘图对试件表面平整度有很高的要求,因此需要精细的打磨抛光处理.首先,在自动磨抛机上用80
纳米压痕测试采用iMicro Nanoindenter型纳米压痕仪,荷载和位移分辨率分别为6 nN和0.04 nm.试验采用Berkovich金刚石压头,其弹性模量和泊松比分别为1 141 GPa和0.07.采用NanoBlitz3D的高速纳米压痕方法,在该模式下,包含接触检测、加载、卸载在内的单个压痕测试过程所需时间不到1 s,从而可以在短时间内测得大量数据,实现材料的高速、高分辨率力学性能测绘.选取100×100点阵进行纳米压痕试验,点间距1 μm,压入荷载0.4 mN.每种水灰比测绘了3张空间分辨率为1 μm的100 μm×100 μm力学性能图.
聚类分析是一种无监督学习方法,常见的基于欧氏距离的聚类方法有K‑means算法和K‑medoids算法.K‑medoids聚
(5) |
式中:dist(xi, xj)为拥有p个维度的样本点xi与xj之间的欧式距离,即:
(6) |
当E达到最小时,得到k个簇C1,C2,…Ck及其聚类中心o1,o2,…ok.
K‑medoids聚类过程如

图2 K‑medoids聚类过程示意图
Fig.2 Schematic diagram of K‑medoids clustering
在K‑medoids算法中,每个组的聚类中心是组内的数据点,因此比起将组内数据的均值当作聚类中心的K‑means算法,K‑medoids算法的鲁棒性更好,不易受异常值的影响.与传统的解卷积方
水泥基胶凝材料中的矿相十分复杂,包含水化硅酸钙(C‑S‑H)、氢氧化钙(CH)、水化硫铝酸钙(AFm和AFt)等水化产物,同时还有未水化水泥颗粒中的硅酸三钙(C3S)、硅酸二钙(C2S)、铝酸三钙(C3A)、铁铝酸四钙(C4AF)以及石膏
图

图3 3个水灰比水泥净浆试样弹性模量的3D‑mapping云图
Fig.3 3D‑mapping cloud map of elastic modulus for cement paste samples with three water‑cement ratios

图4 3个水灰比水泥净浆试样硬度的3D‑mapping云图
Fig.4 3D‑mapping cloud map of hardness for cement paste samples with three water‑cement ratios
高速纳米压痕测试速度快,单个测试可在1 s内完成.同时,为了提高分辨率,点与点之间通常设置为较小间距.因为较高的应变率和较小的点间距,导致测量的材料力学参数的准确性受到一定影
按照Chen

图5 3个水灰比试样的K‑medoids聚类结果
Fig.5 K‑medoids clustering results of cement samples with three water‑cement ratios
mW/mC | Phase | Deconvolution | K‑medoids clustering | ||||
---|---|---|---|---|---|---|---|
E/GPa | H/GPa | Volume fraction | E/GPa | H/GPa | Volume fraction | ||
0.2 | PP | 13.69±2.04 | 0.35±0.21 | 0.06 | 13.71±2.57 | 0.46±0.14 | 0.10 |
LD C‑S‑H | 20.02±2.47 | 0.69± 0.13 | 0.19 | 18.78±1.67 | 0.68± 0.13 | 0.17 | |
HD C‑S‑H | 28.49±5.99 | 1.15±0.33 | 0.47 | 27.94±6.00 | 1.15±0.37 | 0.48 | |
CH | 48.08±6.75 | 2.39±0.44 | 0.14 | 47.02±8.70 | 2.45±0.57 | 0.12 | |
UHP | 73.51±18.60 | 4.64±1.14 | 0.14 | 74.53±18.73 | 4.68±1.23 | 0.13 | |
0.4 | PP | 12.14±3.22 | 0.45±0.15 | 0.13 | 12.22±2.99 | 0.47±0.19 | 0.15 |
LD C‑S‑H | 19.32±2.82 | 0.78± 0.14 | 0.26 | 19.31±2.01 | 0.79± 0.16 | 0.25 | |
HD C‑S‑H | 26.16±3.95 | 1.17±0.24 | 0.36 | 27.35±4.28 | 1.25±0.32 | 0.39 | |
CH | 40.52±8.10 | 2.45±0.65 | 0.15 | 43.34±8.54 | 2.86±0.74 | 0.13 | |
UHP | 70.00±17.62 | 4.80±0.82 | 0.10 | 71.32±16.53 | 5.11±1.12 | 0.08 | |
0.6 | PP | 11.90±3.29 | 0.48±0.19 | 0.28 | 11.49±2.92 | 0.47±0.18 | 0.27 |
LD C‑S‑H | 18.51±3.19 | 0.89±0.21 | 0.30 | 18.76±2.92 | 0.80±0.21 | 0.31 | |
HD C‑S‑H | 25.91±3.81 | 1.43±0.29 | 0.24 | 26.23±4.21 | 1.42±0.27 | 0.24 | |
CH | 36.34±6.16 | 2.29±0.51 | 0.16 | 37.25±7.83 | 2.40±0.58 | 0.17 | |
UHP | 76.62±11.01 | 4.90±0.68 | 0.02 | 74.23±15.14 | 4.75±1.07 | 0.01 |
此外,聚类分析的另一优势在于其结果可直接将各个测点的几何坐标与其所归属的矿相相对应,从而得到矿相的几何分布,如

图6 3个水灰比试样的矿相分布图
Fig.6 Main mineral phases mapping of cement samples with three water‑cement ratios
由
(1)0.2水灰比水泥净浆中UHP相较多而PP相较少,其体积分数分别为13%和10%;0.6水灰比水泥净浆中UHP相的体积分数只有约1%,PP相的体积分数较高,为27%.这说明高水灰比有利于水泥颗粒的充分水化,但同时生成了较多的孔隙,导致其强度降低.
(2)CH相的体积分数也与水泥的水化程度对应,0.2、0.4、0.6水灰比的水泥试样,CH相的体积分数分别是12%、13%、17%,随着水化程度的提高而上升.随着水灰比的增大,LD C‑S‑H相的体积分数增加,HD C‑S‑H相的体积分数减少.在0.2、0.4、0.6水灰比试样中,LD C‑S‑H相的体积分数分别为17%、25%、31%,HD C‑S‑H相的体积分数按48%、39%、24%依次递减.
得到水泥净浆主要矿相的几何分布图后,可以对不连续夹杂相的尺寸分布进行统计分析,而C‑S‑H相由于含量高且呈连续性分布,暂时不进行统计分析.测量每个单独夹杂的面积(S),可以根据
(7) |
水泥净浆的CH相在水泥颗粒周围生成,存在与其他相互相包含的情况,因此上述方法并不适用.此时,可采用图像细化方
将PP相、UHP相的颗粒粒径采用对数正态分布对累积分布函数(CDF)(
(8) |

图7 不同水灰比水泥净浆多孔相的尺寸分布
Fig.7 Size distribution of PP phase in cement paste with different water‑cement ratios

图8 不同水灰比水泥净浆未水化水泥颗粒相的尺寸分布
Fig.8 Size distribution of UHP phase in cement paste with different water‑cement ratios
(1)随着水灰比的增大,PP相的平均尺寸也在逐渐增大,在0.2、0.4、0.6水灰比的水泥净浆试样中,其平均粒径分别为3.41、3.91、5.33 μm.UHP相代表的未水化水泥颗粒相在水灰比为0.2和0.4时的平均粒径接近,分别为4.57、4.50 μm,水灰比0.6时为2.56 μm.与
(2)在尺寸分布上,0.2水灰比UHP相的最大粒径27.97 μm,0.4、0.6水灰比UHP相的最大粒径分别为18.14、12.94 μm,大尺寸的未水化水泥颗粒的含量随着水灰比的增大而减小.采用图像细化计算时,在水灰比为0.2、0.4、0.6的试样中,CH聚集体的厚度分别为1.49、2.11、3.00 μm,说明CH产物随水灰比的增大而增多.
(1)高速纳米压痕3D‑mapping技术可以快速获得较高分辨率的水泥基材料力学性能图像.采用K‑medoids聚类分析处理3D‑mapping云图,可实现矿相划分并得到矿相的几何分布,为深入分析水泥基材料的矿相性能及分布提供了一种新思路与新方法.
(2)典型水灰比水泥基材料3D‑mapping云图的聚类分析结果与传统结论一致,随着水灰比的增加,水泥的水化程度提高,氢氧化钙(CH)相的含量增加;同时多孔相(PP)和低密度C‑S‑H相的含量逐渐增加,高密度C‑S‑H相和未水化水泥颗粒相的含量逐渐减少.
(3)夹杂相的尺寸分布符合对数正态分布.随着水灰比的增加,PP相、CH相聚集体的尺寸逐渐增大,未水化水泥相的含量逐渐减少.
参考文献
CONSTANTINIDES G, ULM F. The effect of two types of C‑S‑H on the elasticity of cement‑based materials: Results from nanoindentation and micromechanical modeling[J]. Cement and Concrete Research, 2004, 34(1):67‑80. [百度学术]
MAEKAWA K, ISHIDA T, KISHI T. Multi‑scale modeling of concrete performance:Integrated material and structural mechanics[J]. Journal of Advanced Concrete Technology, 2003, 1(2):91‑126. [百度学术]
TAYLOR H F W. Cement chemistry[M]. London:Thomas Telford, 1997. [百度学术]
WEI Y, LIANG S, GAO X. Phase quantification in cementitious materials by dynamic modulus mapping[J]. Materials Characterization, 2017, 127:348‑356. [百度学术]
赵素晶, 孙伟. 纳米压痕在水泥基材料中的应用与研究进展[J]. 硅酸盐学报, 2011,39(1):164‑176. [百度学术]
ZHAO Sujing, SUN Wei. Application and research progress of nanoindentation in the field of cement‑based materials[J]. Journal of the Chinese Ceramic Society, 2011, 39(1):164‑176. (in Chinese) [百度学术]
李一凡, 管学茂, 刘松辉, 等. 压痕点数及解卷积法对水泥纳米压痕试验的影响[J]. 建筑材料学报, 2021, 24(2):291‑295. [百度学术]
LI Yifan, GUAN Xuemao, LIU Songhui, et al. Effect of number of indentation points and deconvolution method on cement nanoindentation test[J]. Journal of Building Materials, 2021, 24(2):291‑295. (in Chinese) [百度学术]
刁益彤, 麻海燕, 余红发, 等. 珊瑚混凝土骨料‑净浆界面区强度[J]. 建筑材料学报, 2021, 24(3):516‑524. [百度学术]
DIAO Yitong, MA Haiyan, YU Hongfa, et al. Strength of aggregate‑paste interface transition zone of coral concrete[J]. Journal of Building Materials, 2021, 24(3):516‑524. (in Chinese) [百度学术]
OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6):1564‑1583. [百度学术]
OLIVER W C, PHARR G M. Measurement of hardness and elastic modulus by instrumented indentation:Advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19(1):3‑20. [百度学术]
CONSTANTINIDES G, ULM F J. The nanogranular nature of C‑S‑H[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(1):64‑90. [百度学术]
ZHU W Z, HUGHES J J, BICANIC N, et al. Nanoindentation mapping of mechanical properties of cement paste and natural rocks[J]. Materials Characterization, 2007, 58(11/12):1189‑1198. [百度学术]
NĚMEČEK J, LUKEŠ J, NĚMEČEK J. High‑speed mechanical mapping of blended cement pastes and its comparison with standard modes of nanoindentation[J]. Materials Today Communications, 2020, 23:100806. [百度学术]
VRANJES‑WESSELY S, MISCH D, KIENER D, et al. High‑speed nanoindentation mapping of organic matter‑rich rocks:A critical evaluation by correlative imaging and machine learning data analysis[J]. International Journal of Coal Geology, 2021, 247:103847. [百度学术]
VIGNESH B, OLIVER W C, KUMAR G S, et al. Critical assessment of high speed nanoindentation mapping technique and data deconvolution on thermal barrier coatings[J]. Materials and Design, 2019, 181:108084. [百度学术]
HINTSALA E, RISAN J, DIETRICH R, et al. Correlated EBSD and high speed nanoindentation mapping[J]. Microscopy and Microanalysis, 2017, 23(Suppl 1):780‑781. [百度学术]
JANAKIRAM S, PHANI P S, UMMETHALA G, et al. New insights on recovery and early recrystallization of ferrite‑pearlite banded cold rolled high strength steels by high speed nanoindentation mapping[J]. Scripta Materialia, 2021, 194:113676. [百度学术]
MUGHAL M Z, MOSCATELLI R, SEBASTIANI M. Load displacement and high speed nanoindentation data set at different state of charge (SoC) for spinel LixMn2O4 cathodes[J]. Data in Brief, 2016, 8:203‑206. [百度学术]
ROA J J, SUDHARSHAN PHANI P, OLIVER W C, et al. Mapping of mechanical properties at microstructural length scale in WC‑Co cemented carbides:Assessment of hardness and elastic modulus by means of high speed massive nanoindentation and statistical analysis[J]. International Journal of Refractory Metals and Hard Materials, 2018, 75:211‑217. [百度学术]
CUY J L, MANN A B, LIVI K J, et al. Nanoindentation mapping of the mechanical properties of human molar tooth enamel[J]. Archives of Oral Biology, 2002, 47(4):281‑291. [百度学术]
JAIN A K, MURTY M N, FLYNN P J. Data clustering:A review[J]. ACM Computing Surveys, 1999, 31(3):264‑323. [百度学术]
CHEN X W, HOU D W, HAN Y D, et al. Clustering analysis of grid nanoindentation data for cementitious materials[J]. Journal of Materials Science, 2021, 56(21):12238‑12255. [百度学术]
PARK H, JUN C. A simple and fast algorithm for K‑medoids clustering[J]. Expert Systems with Applications, 2009, 36(2):3336‑3341. [百度学术]
LOTHENBACH B. Thermodynamic equilibrium calculations in cementitious systems[J]. Materials and Structures, 2010, 43(10):1413‑1433. [百度学术]
ULM F J, VANDAMME M, BOBKO C, et al. Statistical indentation techniques for hydrated nanocomposites:Concrete, bone, and shale[J]. Journal of the American Ceramic Society, 2007, 90(9):2677‑2692. [百度学术]
HU C L. Nanoindentation as a tool to measure and map mechanical properties of hardened cement pastes[J]. MRS Communications, 2015, 5(1):83‑87. [百度学术]
SUDHARSHAN PHANI P, OLIVER W C. A critical assessment of the effect of indentation spacing on the measurement of hardness and modulus using instrumented indentation testing[J]. Materials and Design, 2019, 164:107563. [百度学术]
VANDAMME M, ULM F, FONOLLOSA P. Nanogranular packing of C‑S‑H at substochiometric conditions[J]. Cement and Concrete Research, 2010, 40(1):14‑26. [百度学术]
魏亚, 高翔, 梁思明. 硬化水泥净浆基于纳米压痕的相态识别与水化程度计算[J]. 复合材料学报, 2017, 34(5):1122‑1129. [百度学术]
WEI Ya, GAO Xiang, LIANG Siming. Nanoindentation‑based study of the microstructure and degree of hydration in hardened cement paste[J]. Acta Materiae Compositae Sinica, 2017, 34(5):1122‑1129. (in Chinese) [百度学术]
LEE T, KASHYAP R L. Building skeleton models via 3‑D medial surface axis thinning algorithms[J]. CVGIP:Graphical Models and Image Processing, 1994, 56(6):462‑478. [百度学术]