摘要
提出了一种再生建筑废弃物的高效利用方法,并以此制备了生态型超高性能混凝土(UHPC).基于改进的颗粒堆积模型(MAA模型),开发了最大粒径为4.75 mm的碳化再生粗骨料(CRCA)超高性能混凝土(CRCA‑UHPC),评估了CRCA对UHPC 宏观性能及纳微观结构的影响.结果表明:将CRCA掺入 UHPC中可以改善UHPC的力学性能和耐久性能,降低UHPC的自收缩,优化骨料与基体间的界面过渡区(ITZ).
利用建筑垃圾制备再生粗骨料(RCA),并将其应用于混凝土中,不仅是解决建筑垃圾堆积问题的重要措施之一,并且还可有效解决天然骨料(NA)短缺的问
为有效解决上述问题,可采用加速碳化技术进行再生骨料的强化处理.Xuan
超高性能混凝土(UHPC)是一种新型建筑材料,由于其优异的力学性能、耐久性
水泥(C)为华新水泥投资有限公司产P·O 52.5普通硅酸盐水泥,表观密度为3 144 kg/
Material | CaO | SiO2 | Al2O3 | Fe2O3 | MgO | Na2O | P2O5 | SO3 | K2O | IL |
---|---|---|---|---|---|---|---|---|---|---|
C | 64.930 | 19.200 | 4.180 | 3.320 | 1.610 | 0.090 | 0.090 | 3.350 | 0.780 | 2.450 |
SF | 0.360 | 94.650 | 0.250 | 0.150 | 0.470 | 0.130 | 0.170 | 0.690 | 0.840 | 2.290 |
LP | 54.060 | 0.191 | 0.083 | 0.088 | 2.891 | 0.012 | 0.020 | 42.620 |

图1 碳化再生粗骨料处理流程图
Fig.1 Processing flow chart of CRCA
CRCA的碳化参数为:气压0.3 MPa、温度20 ℃、相对湿度50%、时间24 h.碳化处理前后RCA的微观形貌及能谱分析(EDS)如图

图2 碳化前后再生粗骨料的微观形貌
Fig.2 Microscopic morphology of RCA before and after carbonization

图3 碳化前后再生骨料的EDS分析
Fig.3 EDS analysis of RCA before and after carbonization
通过改进的颗粒堆积模型(MAA模型)设计UHPC的配合比,见
Type of UHPC | C | SF | LP | NA | RCA | CRCA | Water | SP | |||
---|---|---|---|---|---|---|---|---|---|---|---|
0-0.60 mm | 0.60-1.25 mm | 1.25-2.36 mm | 2.36-4.75 mm | ||||||||
NA‑UHPC | 721 | 168 | 103 | 145 | 324 | 83 | 554 | 0 | 0 | 170 | 35 |
RCA‑UHPC | 721 | 168 | 103 | 145 | 324 | 83 | 0 | 554 | 0 | 170 | 35 |
CRCA‑UHPC | 721 | 168 | 103 | 145 | 324 | 83 | 0 | 0 | 554 | 170 | 35 |
先按照
(1)粗骨料的表观密度和吸水率
使用排液法和茶包法分别测试3种粗骨料的表观密度和吸水率.
(2)UHPC的抗压强度
将新鲜砂浆混合均匀后,倒入尺寸为40 mm×40 mm×160 mm的模具中,在20 ℃的喷水养护室内养护至3、7、28 d.抗压强度试验方法参照BS‑EN 196‑1:2005《Methods of testing cement‑Part 1: Determination of strength》.
(3)UHPC的自收缩
使用半径为2.5 mm、端距为42 mm的波纹管进行UHPC的自收缩测试.测试环境温度为(20±2) ℃、相对湿度为(60±5)%.将UHPC的终凝时间定义为其自收缩的起始点.
(4)UHPC的抗氯离子渗透性能
参照GB/T 50082—2009《普通混凝土长期性能和耐久性能试验方法标准》,对UHPC的耐久性进行评价.试样固化时间为128 d.
(5)UHPC的微观结构
采用QUANTA FEG 450分析UHPC 的微观结构,并获得扫描电子显微镜(SEM)照片.为进一步研究CRCA对UHPC中骨料和基体间界面的影响,对试样进行纳米压痕测试.
3种粗骨料的基本性能如
Basic property | NA | RCA | CRCA |
---|---|---|---|
Water absorption(by mass)/% | 4.40 | 6.95 | 4.05 |
Apparent density/(g·c | 2.56 | 2.54 | 2.59 |

图4 不同粗骨料对UHPC抗压强度的影响
Fig.4 Effect of different coarse aggregates on compressive strength of UHPC

图5 CRCA和RCA对UHPC自收缩的影响
Fig.5 Effect of CRCA and RCA on autogenous shrinkage of UHPC

图6 不同粗骨料对UHPC抗氯离子渗透性能的影响
Fig.6 Effect of different coarse aggregates on durability of UHPC

图7 3种UHPC的SEM‑BSE照片
Fig.7 SEM‑BSE images of three kinds of UHPC

图8 CRCA和RCA对UHPC界面过渡区(ITZ)硬度的影响
Fig.8 Effect of CRCA and RCA on hardness of interface transition zone(ITZ) of UHPC
(1)采用粒径为2.36~4.75 mm的CRCA替代NA制备了UHPC.通过使用MAA模型,可保证CRCA‑UHPC致密的堆积结构.
(2)相较于对照组,CRCA‑UHPC的抗压强度提高9.1%,达到122.66 MPa;CRCA‑UHPC的抗氯离子迁移能力提高65%.
(3)RCA经碳化处理后,改善了附着在RCA上的砂浆力学性能,提高了CRCA与基体间ITZ的平均硬度,减少了CRCA对UHPC微观结构产生的明显负面影响.
参考文献
张家广,陈景琦,孟庆玲,等. 混菌矿化增强再生混凝土粗骨料物理力学性能[J]. 建筑材料学报,2022,25(10):1027‑1033. [百度学术]
ZHANG Jiaguang, CHEN Jingqi, MENG Qingling, et al. Mixed bacteria mineralization to enhance physical and mechanical properties of recycled concrete coarse aggregate[J].Journal of Building Materials,2022,25(10):1027‑1033.(in Chinese) [百度学术]
WANG X, YU R, SHUI Z, et al. Optimized treatment of recycled construction and demolition waste in developing sustainable ultra‑high performance concrete[J]. Journal of Cleaner Production. 2019;221:805‑16. [百度学术]
陈守开,刘洋,赵云鹏,等. 废玻璃颗粒对再生骨料透水混凝土的改性作用[J/OL]. 建筑材料学报[2022‑05‑15].https://kns.cnki.net/kcms/detail/31.1764.TU.20220117.1101.008.html. [百度学术]
CHEN Shoukai, LIU Yang, ZHAO Yunpeng, et al. Modification effect of waste glass particles on recycled aggregate pervious concrete[J].Journal of Building Materials[2022‑05‑15]. https://kns.cnki.net/kcms/detail/31.1764.TU.20220117.1101. [百度学术]
html.(in Chinese) [百度学术]
COELHO A, BRITO J D. Economic viability analysis of a construction and demolition waste recycling plant in Portugal‑part I:Location, materials, technology and economic analysis[J]. Journal of Cleaner Production, 2013,39(5):338‑52.. [百度学术]
BEHERA M, BHATTACHARYYA S K, MINOCHA A K, et al. Recycled aggregate from C&D waste & its use in concrete‑A breakthrough towards sustainability in construction sector:A review[J]. Construction and Building Materials,2014, 68(15):501‑516. [百度学术]
XUAN D, ZHAN B, POON C S. Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates[J]. Cement and Concrete Composites,2016, 65:67‑74. [百度学术]
FAN D, YU R, FU S, et al. Precise design and characteristics prediction of ultra‑high performance concrete (UHPC) based on [百度学术]
artificial intelligence techniques[J]. Cement and Concrete Composites, 2021, 122:104171. [百度学术]
覃维祖,曹峰. 一种超高性能混凝土——活性粉末混凝土[J]. 工业建筑,1999(4):18‑20. [百度学术]
QIN Weizu, CAO Feng. A kind of ultra‑high performance concrete—Reactive powder concrete[J]. Industrial Architecture, 1999(4):18‑20. (in Chinese) [百度学术]
陈宝春,季韬,黄卿维,等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3):1‑24. [百度学术]
CHEN Baochun, JI Tao, HUANG Qingwei, et al. Review of ultra high performance concrete research[J]. Chinese Journal of Building Science and Engineering,2014,31(3):1‑24.(in Chinese) [百度学术]
DONG E, YU R, FAN D, et al. Absorption‑desorption process of internal curing water in ultra‑high performance concrete (UHPC) incorporating pumice:From relaxation theory to dynamic migration model[J]. Cement and Concrete Composite, 2022,133:104659. [百度学术]
HABER Z B, MUNOZ J F, DE LA VARGA I, et al. Bond characterization of UHPC overlays for concrete bridge decks:Laboratory and field testing[J]. Construction and Building Materials,2018, 190:1056‑1068. [百度学术]
LI P P, YU Q L, BROUWERS H J H. Effect of coarse basalt aggregates on the properties of ultra‑high performance concrete (UHPC)[J]. Construction and Building Materials,2018, 170:649‑659. [百度学术]
ZENG X, DENG K, LIANG H, et al. Uniaxial behavior and constitutive model of reinforcement confined coarse aggregate UHPC[J]. Engineering Structures,2020, 207:110261. [百度学术]
KOU S C, ZHAN B J, POON C S . Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates[J]. Cement and Concrete Composites,2014, 45(1):22‑28. [百度学术]