摘要
鉴于现有模型未计入用于制造再生骨料的废弃混凝土(基体混凝土)水灰比及残余砂浆含量对再生混凝土峰值应变的影响,基于复合材料模型得到了4种考虑基体混凝土水灰比及残余砂浆含量影响的再生混凝土峰值应变预测模型,并且采用收集到的100组试验数据对模型的可靠性进行了验证.结果表明:各模型的预测结果差异较大;Hirsch模型和Counto模型的精度较高,预测结果与试验结果之比的平均值为0.978~1.000,变异系数为0.072~0.080.
通过调整混凝土配制时的用水
为此,本文首先基于收集到的100组再生混凝土峰值应变数据,充分论证传统再生混凝土峰值应变模型的局限性;随后,在复合材料模型的基础上,考虑再生骨料的影响,通过理论推导建立考虑残余砂浆含量及基体混凝土水灰比影响的峰值应变预测模型;最后,通过参数分析与试验数据对比,确定了形式较为简单且预测精度较高的预测模型.
目前,各国学者已考虑再生骨料掺入的影响,对再生混凝土峰值应变预测模型开展了研究,针对加载方
因此,本节将主要讨论现有建模方法在预测收集到的100组较广参数范围峰值应变数据时的可靠性,为后文再生混凝土峰值应变模型的建立奠定基础.
为评估传统混凝土峰值应变建模方法在预测再生混凝土峰值应变时的可靠性,对所收集到的12篇文

图1 再生混凝土峰值应变与强度的关系
Fig.1 Relationship between εc0,r and fcm28 of RAC
近年来,各国学

图2 与rC的关系
Fig.2 Relationship between and rC

图3 不同基体混凝土水灰比及残余砂浆含量的典型峰值应变数据对比
Fig.3 Comparison of strain at peak stress for salient RAC with different mWor/mCor and wR
从
综上,以rC为主要参数的传统建模方法无法准确描述由基体混凝土水灰比及残余砂浆含量变化引起的再生骨料影响差异,具有局限性.
文献[
(1) |
式中:、与分别为当普通混凝土(NAC)轴向应力达到峰值应力时混凝土、天然骨料及砂浆的纵向应变;与分别为普通混凝土中天然粗骨料与新砂浆的体积分数;、、与分别为当再生混凝土轴向应力达到峰值应力时混凝土、天然骨料、新砂浆与残余砂浆的纵向应变;、与分别为再生混凝土中总天然粗骨料(包括新天然粗骨料及再生粗骨料中的原天然粗骨料)、新砂浆和残余砂浆的体积分数.
为对比所有常见复合材料模
(2) |
(3) |
(4) |
(5) |
(6) |
(7) |
式中:为骨料的弹性模量,MPa;为当普通混凝土轴向应力达到峰值应力时新砂浆的割线模量,MPa;、分别为当再生混凝土轴向应力达到峰值应力时新砂浆、残余砂浆的割线模量,MPa;为再生混凝土中所有粗骨料的体积分数.
在混凝土加载过程中,骨料处于弹性阶段,因此骨料的变形(与)分别表示为:
(8) |
(9) |
式中:、分别为再生混凝土、普通混凝土达到峰值应力时骨料所承受的应力,MPa;对于Ruess模型(串联模
(10) |
(11) |
式(
(12) |
(13) |
(14) |
式中:、分别为再生混凝土达到峰值应力时新砂浆、残余砂浆所承受的应力,MPa;对于Ruess模型而言,二者均为;对于Counto模型而言,通过骨料、残余砂浆、新砂浆呈现的并联关
(15) |
(16) |
(17) |
由上述模型的推导过程可知,再生混凝土、普通混凝土中砂浆的割线模量(即:、、)为关键计算参数,其取值应处于砂浆的弹性模量(Em、Erm)与砂浆峰值应力所对应的割线模量(、)之间. 根据Kohee
(18) |
(19) |
本文采用新旧砂浆弹性模量(Em、Erm)与其峰值应变对应割线模量(、)的平均值为再生混凝土和普通混凝土中砂浆的割线模量(即,、、)代表值进行计算,如式(
(20) |
(21) |
(22) |
(23) |
根据Chaidachatorn
(24) |
(25) |
式中:mW/mC为再生混凝土的水灰比.
此外,基于文献[
(26) |
(27) |
将式(
(28) |
(29) |
(30) |
(31) |
式中:
(32) |
(33) |
(34) |
(35) |
(36) |
从式(
采用各再生混凝土峰值应变模型进行参数分析,结果如

图4 各模型峰值应变的计算结果对比
Fig.4 Comparison of predictions for each peak strain model
从
各模型预测结果的差异也随着再生粗骨料取代率、残余砂浆含量和基体混凝土水灰比的增大而显著增大. 例如,对于mWor/mCor=0.30与wRM=20.0%的混凝土,当再生粗骨料取代率从25%增至100%时,各模型差异将由1.04%提高至4.2%(

图5 各模型预测结果与试验对比
Fig.5 Comparison of predictions and test results for each peak strain model
将所提出的再生混凝土峰值应变预测模型与收集到的100组现有试验结
为说明考虑基体混凝土水灰比及残余砂浆含量影响的必要性,将本文模型(Hirsch模型、Counto模型)与不考虑上述影响因素的模型预测结果进行对比,如

图6 不同基体混凝土水灰比及残余砂浆含量的典型试件预测峰值应变与试验结果对比
Fig.6 Comparison of predicted peak strain and measured results for salient RAC with different mWor/mCor and wRM
(1)基体混凝土水灰比mWor/mCor和残余砂浆含量wRM对再生混凝土峰值应变的影响显著.对于100%取代再生粗骨料的混凝土,当mWor/mCor由0.56下降至0.28时,再生骨料的影响幅度下降49%;当wRM由5.5%提高至34.7%时,该影响幅度增大23%.
(2)基于复合材料理论,采用理论推导方式建立了4种可考虑mWor/mCor以及wRM影响的再生混凝土峰值应变模型.各模型预测结果的差异随着再生粗骨料取代率、wRM与mWor/mCor的增大而显著增大,差异可达31.7%.
(3)Hirsch模型和Counto模型的预测精度较高,离散性较低.特别是在预测基体混凝土水灰比较高与残余砂浆含量较低(mWor/mCor>mW/mC及wRM<20.0%)的混凝土时呈现明显优势,预测结果与试验结果之比的平均值为0.978~1.000,变异系数为0.072~0.080.考虑到Counto模型较为复杂,本文推荐使用Hirsch模型进行预测.
参考文献
段珍华, 江山山, 肖建庄, 等. 再生粗骨料含水状态对混凝土性能的影响[J]. 建筑材料学报, 2021, 24(3):545‑550. [百度学术]
DUAN Zhenhua, JIANG Shanshan, XIAO Jianzhuang, et al. Effect of moisture condition of recycled coarse aggregate on the properties of concrete[J]. Journal of Building Materials, 2021, 24(3):545‑550. (in Chinese) [百度学术]
GENG Y, ZHAO M Z, YANG H, et al. Creep model of concrete with recycled coarse and fine aggregates that accounts for creep development trend difference between recycled and natural aggregate concrete[J]. Cement and Concrete Composites, 2019, 103:303‑317. [百度学术]
BRAVO M, PONTES J, DE BRITO J, et al. Shrinkage and creep performance of concrete with recycled aggregates from CDW plants[J]. Magazine of Concrete Research, 2017, 69(19):974‑995. [百度学术]
KHOSHKENARI A G, SHAFIGH P, MOGHIMI M, et al. The role of 0‑2mm fine recycled concrete aggregate on the compressive and splitting tensile strengths of recycled concrete aggregate concrete[J]. Materials & Design, 2014, 64:345‑354. [百度学术]
AJDUKIEWICZ A, KLISZCZEWICZ A. Influence of recycled aggregates on mechanical properties of HS/HPC[J]. Cement and Concrete Composites, 2002, 24(2):269‑279. [百度学术]
陈宇良, 姜锐, 陈宗平, 等. 钢纤维再生混凝土直剪力学性能试验研究[J]. 建筑材料学报, 2022, 25(9):984‑990. [百度学术]
CHEN Yuliang, JIANG Rui, CHEN Zongping, et al. Experimental study on mechanical properties of steel fiber recycled concrete in direct shear[J]. Journal of Building Materials, 2022, 25(9):984‑990.(in Chinese) [百度学术]
XIAO J, LI J B, ZHANG C. Mechanical properties of recycled aggregate concrete under uniaxial loading[J]. Cement and Concrete Research, 2005, 35(3):1187‑1194. [百度学术]
陈宗平, 徐金俊, 郑华海, 等. 再生混凝土基本力学性能试验及应力-应变本构关系[J]. 建筑材料学报, 2013, 16(1):24‑32. [百度学术]
CHEN Zongping, XU Jinjun, ZHENG Huahai, et al. Basic mechanical properties test and stress‑strain constitutive relations of recycled coarse aggregate concrete[J]. Journal of Building Materials, 2013, 16(1):24‑32. (in Chinese) [百度学术]
ZHAO M Z, GENG Y, WANG Y Y, et al. Compounding effect and an expanded theoretical model for recycled coarse and fine aggregate concretes under uniaxial loading[J]. Construction and Building Materials, 2022, 320:126226. [百度学术]
ZHAO M Z, WANG Y Y, LEHMAN D E, et al. Response and modeling of steel tube filled with recycled fine and coarse aggregate concrete under long‑term loading[J]. Journal of Structural Engineering, 2021, 147(11):04021166. [百度学术]
FOLINO P, XARGAY H. Recycled aggregate concrete‑mechanical behavior under uniaxial and triaxial compression[J]. Construction and Building Materials, 2014, 56:21‑31. [百度学术]
XIAO J Z, ZHANG K J, AKBARNEZHAD A. Variability of stress‑strain relationship for recycled aggregate concrete under uniaxial compression loading[J]. Journal of Cleaner Production, 2018, 181:753‑771. [百度学术]
BELEN G F, FERNANDO M A, DIEGO C L, et al. Stress‑strain relationship in axial compression for concrete using recycled saturated coarse aggregate[J]. Construction and Building Materials, 2011, 25:2335‑2342. [百度学术]
ZHAO H, LIU F Q, WANG Y Y. Stress‑strain relationship of coarse RCA concrete exposed to elevated temperatures[J]. Magazine of Concrete Research, 2017, 69(13):649‑664. [百度学术]
ZHOU C H, CHEN Z P. Mechanical properties of recycled concrete made with different types of coarse aggregate[J]. Construction and Building Materials, 2017, 134:497‑506. [百度学术]
PENG J L, DU T, ZHAO T S, et al. Stress‑strain relationship model of recycled concrete based on strength and replacement rate of recycled coarse aggregate[J]. Journal of Materials in Civil Engineering, 2019, 31(9):04019189. [百度学术]
陈杰. 钢管再生混凝土柱长期静力性能研究[D]. 哈尔滨:哈尔滨工业大学, 2016. [百度学术]
CHEN Jie. Time‑dependent behavior of recycled aggregate concrete filled steel tubular columns[D]. Harbin:Harbin Institute of Technology, 2016. (in Chinese) [百度学术]
LUO S R, YE S C, XIAO J Z, et al. Carbonated recycled coarse aggregate and uniaxial compressive stress‑strain relation of recycled aggregate concrete[J]. Construction and Building Materials, 2018, 188:956‑965. [百度学术]
ZHAO H, LIU F Q, YANG H. Residual compressive response of concrete produced with both coarse and fine recycled concrete aggregates after thermal exposure[J]. Construction and Building Materials, 2020, 224:118397. [百度学术]
RAHAL K. Mechanical properties of concrete with recycled coarse aggregate[J]. Building and Environment, 2007, 42:407‑415. [百度学术]
PEDRO D, BRITO J D, EVANGELISTA L. The effect of superplasticisers on the workability and compressive strength of concrete made with fine recycled concrete aggregates[J]. Construction and Building Materials, 2012, 154:294‑309. [百度学术]
HUDA S B, ALAM M S. Mechanical behavior of three generations of 100% repeated recycled coarse aggregate concrete[J]. Construction and Building Materials, 2014, 65:574‑582. [百度学术]
LIANG J F, WANG E, ZHOU X, et al. Influence of high temperature on mechanical properties of concrete containing recycled fine aggregate[J]. Computers and Concrete, 2018, 21(1):87‑94. [百度学术]
赵晖. 再生混凝土耐高温性能及构件抗火分析[D]. 哈尔滨:哈尔滨工业大学, 2018. [百度学术]
ZHAO Hui. High‑temperature resistance properties of recycled aggregate concrete and fire resistance of members[D]. Harbin:Harbin Institute of Technology, 2018. (in Chinese) [百度学术]
常煜存, 耿悦, 王玉银, 等. 基于两相复合材料的再生混凝土弹性模量预测模型[J]. 建筑结构学报, 2020, 41(12):165‑173. [百度学术]
CHANG Yucun, GENG Yue, WANG Yuyin, et al. Models of elastic modulus for concrete made with recycled coarse aggregate based on two‑phase composite material[J]. Journal of Building Structures, 2020, 41(12):165‑173. (in Chinese) [百度学术]
ZHOU F P, LYDON F D, BARR B I G. Effect of coarse aggregate on elastic modulus and compressive strength of high performance concrete[J]. Cement and Concrete Research, 1995, 25(1):177‑186. [百度学术]
KOHEES M, SANJAYAN J, RAJEEV P. Stress‑strain relationship of cement mortar under triaxial compression[J]. Construction and Building Materials, 2019, 220:456‑463. [百度学术]
FATHIFAZL G, RAZAQPUR A G, ISGOR O B, et al. Creep and drying shrinkage characteristics of concrete produced with coarse recycled concrete aggregate[J]. Cement and Concrete Composites, 2011, 33(10):1026‑1037. [百度学术]
CHARDACHATORN K, SUEBSUK J, HORPIBULSUK S, et al. Extended water/cement ratio law for cement mortar containing recycled asphalt pavement[J]. Construction and Building Materials, 2019, 196:457‑467. [百度学术]
WANG Y Y, ZHANG H, GENG Y, et al. Prediction of the elastic modulus and the splitting tensile strength of concrete incorporating both fine and coarse recycled aggregate[J]. Construction and Building Materials, 2019, 215:332‑346. [百度学术]
赵木子, 杨华, 王玉银, 等. 考虑基体混凝土水灰比影响的再生粗(细)骨料混凝土徐变模型[J]. 建筑结构学报, 2020, 41(12):148‑155 [百度学术]
ZHAO Muzi, YANG Hua, WANG Yuyin, et al. Creep model for recycled coarse and fine aggregate concrete considering water‑cement ratio of matrix concrete[J]. Journal of Building Structures, 2020, 41(12):148‑155. (in Chinese) [百度学术]