摘要
通过多重应力蠕变恢复(MSCR)试验计算了不同再生剂掺量下再生沥青的高温黏弹性特征参数,然后采用3种黏弹性本构模型分别构建了再生沥青高温本构模型,并结合主成分分析(PCA)模型评价了适用于再生沥青高温性能研究的本构模型.结果表明:Burgers模型和三参数固体模型在评价再生沥青高温性能时,特征参数呈现显著的交替波动性,而四参数固体模型具有较好的稳定性;PCA模型发现四参数固体模型比Burgers模型和三参数固体模型具有更显著的评价效果,验证了采用四参数固体模型评价再生沥青高温性能的可靠性.
高温性能对再生沥青的应用具有重要影响,当再生效果不佳时会对沥青在高温下的服役性能造成不利影响,进而影响车辆在再生沥青路面下行驶的安全
目前对于沥青本构关系的研究多采用Burgers模型,但对于高温条件下Burgers模型的适用性研究仍较为少见,且目前沥青高温性能的评价主要通过常规性能试验或流变学试验来进行表征,尤其是DSR试验被广泛应用于评价沥青的高温性
原样沥青(VA)采用I‑D类SBS改性沥青,老化沥青(AA)来自于某高速公路服役5 a以上的SBS改性沥青混凝土表面层路面铣刨料.各沥青的常规性能指标均符合JTG F40—2004《公路沥青路面施工技术规范》的要求,如
Asphalt | Penetration at 25 ℃/(0.1 mm) | Ductility at 5 ℃/cm | Softening point/℃ |
---|---|---|---|
AA | 37.2 | 21 | 75.4 |
VA | 55.9 | 37.2 | 75.8 |
VA after RTFOT aging | 40.4 | 23 | 75.4 |
Technical specification of VA | 40-60 | ≥20 | ≥60 |
Asphalt requirement index after RTFOT or TFOT aging | Penetration ratio≥65% | ≥15 |
本研究通过响应曲面设计法自主开发了一款再生剂(YZSJ‑I),并将其应用于再生沥青的性能研究.再生剂的配方为70%(质量分数,文中涉及的掺量等均为质量分数)基础油分与30%增塑剂相互混合,并在此基础上依次掺入0.438%的抗氧化剂、0.308%的紫外线吸收剂及1.711%的高黏度改性剂,然后在160 ℃下以5 000 r/min剪切40 min,即可制得YZSJ‑I,其性能指标如
Property | Testing purpose | Performance index value | Suggested value |
---|---|---|---|
Kinematic viscosity at 60 ℃/( | Flow performance and dispersion performance | 655 | 200-800 |
Flash point/℃ | Construction safety performance | 242 | ≥220 |
Viscosity ratio before and after RTFOT/60℃ | Control the aging resistance of the rejuvenator | 2.42 | ≤3 |
Mass loss rate before and after RTFOT/% | High temperature resistance to volatility | -1.4 | -4-4 |
Density/(g·c | Density calculation | 0.998 |
先称取200 g老化沥青,再称取不同掺量(2%、4%、5%、6%、8%)的再生剂并将其掺入老化沥青中手动搅拌均匀,得到改性沥青(分别记作RA‑2、RA‑4、RA‑5、RA‑6、RA‑8),然后通过常规性能试验来确定YZSJ‑I的最佳掺量,试验结果如

图1 各沥青的常规性能指标
Fig.1 Performance index of asphalts
本研究分别对原样沥青、老化沥青以及5种再生剂掺量下的再生沥青进行MSCR试验,并对第1次循环下的试验结果进行分析,结果如

图2 各沥青的MSCR试验结果
Fig.2 MSCR test results of asphalts
为了进一步对MSCR试验结果进行分析,对各沥青在不同应力作用下的蠕变恢复率(R)和不可恢复蠕变柔量(Jnr)进行计算,结果如

图3 各沥青的蠕变参数计算结果
Fig.3 Calculation results of creep parameters for asphalts
由
沥青是一种典型的黏弹性材料,因此在流变学黏弹性理论的基础上,可以通过将弹性和黏性的力学元件连接来表征黏弹性材料的力学特
在沥青的流变性研究中,Burgers模型常被用来对一定温度范围内的变形行为进行评估,Burgers模型又称为四参数流体模型,由Maxwell模型和Kelvin模型联结而成,并通过模型中力学参数计算结果来表征材料的本构关
(1) |
式中:为t时刻的应变;为加载应力;t为时间;、为模型的弹性参数;、为模型的黏性参数.
根据Burgers模型方程对MSCR试验蠕变加载阶段的曲线进行计算,结果如

图4 蠕变加载阶段的Burgers模型曲线
Fig.4 Burgers model curves for creep stage
Asphalt | 0.1 kPa | 3.2 kPa | ||||||
---|---|---|---|---|---|---|---|---|
E1/MPa | η1/(MPa·s) | E2/MPa | η2/(MPa·s) | E1/MPa | η1/(MPa·s) | E2/MPa | η2/(MPa·s) | |
VA | 44.066 6 | 0.557 3 | 2.733 5 | 0.883 1 | 55.496 7 | 0.430 2 | 2.184 9 | 0.624 2 |
AA | 137.832 2 | 0.836 9 | 5.986 7 | 2.151 3 | 3 051.885 5 | 0.700 5 | 23.544 6 | 2.173 5 |
RA‑2 | 33.465 9 | 0.557 8 | 1.948 5 | 0.717 4 | 69.167 2 | 0.470 0 | 3.168 4 | 0.835 8 |
RA‑4 | 38.566 8 | 0.581 6 | 2.457 5 | 0.846 9 | 60.996 4 | 0.464 8 | 3.132 2 | 0.810 1 |
RA‑5 | 141.096 5 | 0.381 7 | 2.504 7 | 0.433 9 | 14.834 2 | 0.035 9 | 0.003 | -0.042 4 |
RA‑6 | 48.937 8 | 0.408 8 | 4.268 4 | 0.856 8 |
2.029 3×1 | 0.307 1 | 9.164 9 | 0.821 6 |
RA‑8 | 63.555 2 | 0.353 8 | 2.987 4 | 0.619 5 | 8.599 1 | 0.278 2 |
-5.324 6×1 |
-3.981 1×1 |
由
三参数固体模型又称为标准线性固体模型,该模型是由Kelvin模型和弹簧元件联结而成,可以通过模型的瞬时弹性和稳态渐进性来表征材料的特
(2) |
式中:τd为模型的黏性参数.
根据

图5 蠕变加载阶段的三参数固体模型曲线
Fig.5 Three‑parameter solid model curves for creep stage
Asphalt | 0.1 kPa | 3.2 kPa | ||||
---|---|---|---|---|---|---|
E1/MPa | E2/MPa | τd/(MPa·s) | E1/MPa | E2/MPa | τd/(MPa·s) | |
VA | 22.045 8 | 0.166 7 | 2.314 6 | 18.422 7 | 0.136 5 | 2.167 9 |
AA | 1.526 8 |
-3.932 7×1 |
5.547 3×1 | 1.454 5 |
-2.540 2×1 |
6.014 5×1 |
RA‑2 | 18.913 0 | 0.179 5 | 1.954 2 | 22.466 4 | 0.132 2 | 2.637 2 |
RA‑4 | 21.020 1 | 0.179 7 | 2.155 0 | 20.884 0 | 0.132 2 | 2.602 5 |
RA‑5 | 12.191 6 | 0.130 9 | 2.092 1 | 5.603 7 | -0.001 1 | -250.153 9 |
RA‑6 | 17.683 6 | 0.097 7 | 3.381 8 |
5.244 5×1 | 0.055 2 | 4.918 7 |
RA‑8 | 15.573 8 | 0.097 0 | 2.817 5 | 8.469 8 | -0.001 7 | -161.804 9 |
由
四参数固体模型是将2个Kelvin模型结合在一起,对复杂材料的特性进行表征,进而对材料的黏弹性能进行阐
(3) |
根据

图6 蠕变加载阶段的四参数固体模型曲线
Fig.6 Four‑parameter solid model curves for creep stage
Asphalt | 0.1 kPa | 3.2 kPa | ||||||
---|---|---|---|---|---|---|---|---|
E1/MPa | η1/(MPa·s) | E2/MPa | η2/(MPa·s) | E1/MPa | η1/(MPa·s) | E2/MPa | η2/(MPa·s) | |
VA | 0.411 62 | 0.711 46 | 0.411 62 | 0.711 46 | 0.327 90 | 0.548 79 | 0.327 90 | 0.548 79 |
AA | 0.140 65 | 0.683 91 | 28.673 09 | 2.386 50 | 24.822 53 | 2.116 81 | 0.005 82 | 0.696 54 |
RA‑2 | 0.431 57 | 0.642 58 | 0.431 57 | 0.642 58 | 0.329 16 | 0.649 52 | 0.329 16 | 0.649 52 |
RA‑4 | 0.440 55 | 0.710 49 | 0.440 55 | 0.710 49 | 0.331 81 | 0.638 18 | 0.331 81 | 0.638 18 |
RA‑5 | 0.330 34 | 0.493 05 | 0.330 34 | 0.493 05 | 0.223 67 | 0.429 13 | 0.223 67 | 0.429 13 |
RA‑6 | 0.269 79 | 0.607 63 | 0.269 79 | 0.607 63 | 0.110 35 | 0.542 77 | 0.110 35 | 0.542 77 |
RA‑8 | 0.251 11 | 0.504 57 | 0.251 11 | 0.504 57 | 0.155 61 | 0.470 22 | 0.155 61 | 0.470 22 |
由
通过对Burgers模型、三参数固体模型及四参数固体模型的计算分析,发现对于再生沥青高温性能的评价而言,四参数固体模型表征的黏弹性能变化规律对再生沥青的高温性能评价效果更为显著,但这仅是从参数的变化规律来进行分析,本构模型评价效果的显著性更应从预测值与实测值的对比结果来进行分析,以MSCR试验蠕变加载阶段的终值为基准,对各沥青的本构模型方程进行计算,并对比分析试验实测的变形值,对几种本构模型的相对误差进行分析,结果如

图7 不同应力下3种本构模型的误差分析
Fig.7 Error analysis of three constitutive models under different stresses
由
Indicator | Initial eigenvalue | Extraction of square sum of load | ||||
---|---|---|---|---|---|---|
Characteristic root | Contribution rate/% | Cumulative contribution rate/% | Characteristic root | Contribution rate/% | Cumulative contribution rate/% | |
x1 | 3.358 | 55.974 | 55.974 | 3.358 | 55.974 | 55.974 |
x2 | 1.983 | 33.054 | 89.027 | 1.983 | 33.054 | 89.027 |
x3 | 0.394 | 6.561 | 95.589 | |||
x4 | 0.260 | 4.331 | 99.920 | |||
x5 | 0.005 | 0.080 | 100.000 | |||
x6 |
5.92×1 |
9.87×1 | 100.000 |
由
Indicator | Principal component 1 | Principal component 2 | Component score coefficient 1 | Component score coefficient 2 | Weight coefficient |
---|---|---|---|---|---|
x1 | 0.911 | -0.109 | 0.271 | -0.055 | 0.283 827 928 |
x2 | 0.851 | -0.315 | 0.253 | -0.159 | 0.208 928 215 |
x3 | -0.190 | 0.965 | -0.057 | 0.486 | 0.189 240 423 |
x4 | 0.143 | 0.911 | 0.042 | 0.460 | 0.289 256 123 |
x5 | 0.977 | 0.169 | 0.291 | 0.085 | 0.379 769 632 |
x6 | 0.891 | 0.287 | 0.265 | 0.145 | 0.381 374 434 |
由
(1) 随着再生剂掺量的增加,再生沥青的蠕变恢复率逐渐增加,而不可恢复蠕变柔量逐渐减小,再生剂的掺入对于老化沥青的黏弹性能起到改善效果,且再生剂在低应力下对老化沥青的黏弹性能具备更显著的改善效果;此外,再生沥青的应力敏感性随着再生剂掺量的增加而得到改善,说明再生剂的使用有利于恢复老化沥青的应力敏感性及高温性能.
(2)Burgers模型虽然对再生沥青的变形试验结果拟合精度极高,但其表征的再生沥青黏弹性变化规律并不显著,模型参数呈现出显著的交替波动性;三参数固体模型虽然在0.1 kPa下表现出明显的变化规律,但是在3.2 kPa下的参数呈交替波动性,变化规律并不显著;四参数固体模型在各应力下黏弹性能的变化规律显著,参数交替波动性极小,但再生沥青中的再生剂应注意掺量问题,过量的再生剂会对高温性能造成不利影响.
(3)PCA模型的计算结果表明相较于Burgers模型和三参数固体模型,四参数固体模型更适用于对再生沥青的高温性能进行评价,可以为再生沥青高温性能的定量分析提供参考.
参考文献
陈龙,陈宏斌,李朋,等.高掺RAP沥青界面融合行为的量化评价[J]. 建筑材料学报,2021,24(4):811‑819. [百度学术]
CHEN Long, CHEN Hongbin, LI Peng, et al. Quantitative evaluation on interfacial diffusion behavior of asphalt with high percentage of RAP[J]. Journal of Building Materials, 2021, 24(4):811‑819. (in Chinese) [百度学术]
崔亚楠,崔树宇, 郭立典.废机油再生SBS改性沥青的性能及机理[J]. 建筑材料学报,2022,25(2):164‑170. [百度学术]
CUI Yanan, CUI Shuyu, GUO Lidian. Performance and mechanism of waste oil recycled SBS modified asphalt[J]. Journal of Building Materials, 2022, 25(2):164‑170. (in Chinese) [百度学术]
李晓民,魏定邦,姚志杰,等.再生剂对老化沥青流变性能和微观结构的影响[J]. 建筑材料学报,2018,21(6):992‑999. [百度学术]
LI Xiaomin, WEI Dingbang, YAO Zhijie, et al. Effects of rejuvenators on rheological properties and microstructures of aged asphalt[J]. Journal of Building Materials, 2018, 21(6):992‑999. (in Chinese) [百度学术]
唐伯明,曹芯芯,朱洪洲,等.生物油再生沥青胶结料路用性能分析[J]. 中国公路学报(自然科学版),2019,32(4):207‑214. [百度学术]
TANG Boming, CAO Xinxin, ZHU Hongzhou, et al. Pavement properties of bio‑oil rejuvenated asphalt binder[J]. China Journal of Highway and Transport(Natural Science), 2019, 32(4):207‑214. (in Chinese) [百度学术]
冉龙飞,何兆益, 曹青霞.SBS改性沥青再生剂性能研究[J]. 建筑材料学报,2015,18(4):578‑583,595. [百度学术]
RAN Longfei, HE Zhaoyi, CAO Qingxia. Performance research of regenerative agent based on SBS‑modified asphalt[J]. Journal of Building Materials, 2015, 18(4):578‑583,595. (in Chinese) [百度学术]
JI J, YAO H, SUO Z, et al. Effectiveness of vegetable oils as rejuvenators for aged asphalt binders[J]. Journal of Materials in Civil Engineering, 2017, 29(3):D4016003. [百度学术]
REN S S, LIU X Y, WANG H P, et al. Evaluation of rheological behaviors and anti‑aging properties of recycled asphalts using low‑viscosity asphalt and polymers[J]. Journal of Cleaner Production, 2020, 253:120048. [百度学术]
CHEN T, MA T, HUANG X M, et al. The performance of hot‑recycling asphalt binder containing crumb rubber modified asphalt based on physiochemical and rheological measurements[J]. Construction and Building Materials, 2019, 226, 83‑93. [百度学术]
李晋,于淼章,崔新壮,等.废机油残留物再生沥青的抗老化性能[J]. 建筑材料学报,2021,24(1):224‑230. [百度学术]
LI Jin, YU Miaozhang, CUI Xinzhuang, et al. Anti‑aging performance of recycled engine oil bottom rejuvenated asphalt[J]. Journal of Building Materials, 2021, 24(1):224‑230. (in Chinese) [百度学术]
高新文, 刘朝晖.生物油再生沥青自愈合机理分析[J]. 中国公路学报,2019,32(4):235‑242. [百度学术]
GAO Xinwen, LIU Zhaohui. Self‑healing mechanism of bio‑oil recycled asphalt[J]. China Journal of Highway and Transport, 2019, 32(4):235‑242. (in Chinese) [百度学术]
雷俊安,郑南翔,许新权,等.温拌沥青高温流变性能研究[J]. 建筑材料学报,2020,23(4):904‑911. [百度学术]
LEI Jun'an, ZHENG Nanxiang, XU Xinquan, et al. High temperature rheological properties of warm mixed asphalt[J]. Journal of Building Materials, 2020, 23(4):904‑911. (in Chinese) [百度学术]
郭咏梅,许丽,吴亮,等.基于MSCR试验的改性沥青高温性能评价[J]. 建筑材料学报,2018,21(1):154‑158. [百度学术]
GUO Yongmei, XU Li, WU Liang, et al. High‑temperature performance evaluation of modified asphalts based on multiple stress creep recovery test[J]. Journal of Building Materials, 2018, 21(1):154‑158. (in Chinese) [百度学术]
李锐铎,乐金朝,冯师蓉,等.沥青胶砂改进分数阶导数幂函数经验蠕变本构模型[J]. 建筑材料学报,2015,18(2):237‑242. [百度学术]
LI Ruiduo, YUE Jinchao, FENG Shirong, et al. Improved fractional order derivative empirical power function model for describing the creep of asphalt mortar[J]. Journal of Building Materials, 2015, 18(2):237‑242. (in Chinese) [百度学术]
郑健龙,钱国平, 应荣华.沥青混合料热粘弹性本构关系试验测定及其力学应用[J]. 工程力学, 2008, 25(1):34‑41. [百度学术]
ZHENG Jianlong, QIAN Guoping, YING Ronghua. Testing thermalviscoelastic constitutive relation of asphalt mixtures and its mechanical applications[J]. Engineering Mechanics, 2008, 25(1):34‑41. (in Chinese) [百度学术]
杨丽娟,龙念泉,王岚,等.基于Burgres模型的温拌胶粉沥青胶浆低温流变特性[J]. 建筑材料学报,2022,25(12):1313‑1320. [百度学术]
YANG Lijuan, LONG Nianquan, WANG Lan, et al. Low‑temperature rheological properties of warm‑mixed crumb rubber asphalt mortar based on Burgers model[J]. Journal of Building Materials, 2022, 25(12):1313‑1320. (in Chinese) [百度学术]
李波,张喜军,李剑新,等.基于Burgers模型的硬质沥青低温性能评价[J]. 建筑材料学报,2021,24(5):1110‑1116. [百度学术]
LI Bo, ZHANG Xijun, LI Jianxin, et al. Evaluation on low temperature characterization of hard petroleum asphalt base on the burgers model[J]. Journal of Building Materials, 2021, 24(5):1110‑1116. (in Chinese) [百度学术]
叶永,杨新华, 陈传尧.不同应力水平下沥青砂蠕变模型实验对比[J]. 华中科技大学学报(自然科学版),2009,37(3):116‑118. [百度学术]
YE Yong, YANG Xinhua, CHEN Chuanyao. Experimental comparison of creep models for asphalts and at different levels of stresses[J]. Journal of Huazhong University of Science and Technology(Natural Science), 2009, 37(3):116‑118. (in Chinese) [百度学术]
李峰, 黄颂昌.沥青路面裂缝密封胶的低温应力松弛评价指标[J]. 同济大学学报(自然科学版),2012,40(8):1185‑1188. [百度学术]
LI Feng, HUANG Songchang. Low‑temperature stress relaxation evaluation index of asphalt pavement crack sealants[J]. Journal of Tongji University(Natural Science), 2012, 40(8):1185‑1188. (in Chinese) [百度学术]
徐家伟,叶永, 谢旋.再生沥青混凝土黏弹特性实验研究[J]. 三峡大学学报(自然科学版),2022,44(2):38‑42. [百度学术]
XU Jiawei, YE Yong, XIE Xuan. Experimental study on viscoelastic properties of recycled asphalt concrete[J]. Journal of China Three Gorges University(Natural Science), 2022, 44(2):38‑42. (in Chinese) [百度学术]
YIN P, PAN B F. Effect of RAP content on fatigue performance of hot‑mixed recycled asphalt mixture[J]. Construction and Building Materials, 2022, 328:127077. [百度学术]