摘要
将纳米SiO2(纳米硅溶胶和纳米SiO2粉末)与纳米CaCO3粉末加入再生骨料混凝土(RAC)中,制备得到纳米材料改性RAC.通过三点弯曲梁试验与传统电测法测试其断裂性能.结果表明:适当掺量的纳米SiO2和纳米CaCO3粉末能够有效提高RAC的28 d抗压强度与劈裂抗拉强度;分别掺入1.0%纳米硅溶胶、0.5%纳米SiO2粉末和2.0%纳米CaCO3粉末对RAC双K断裂参数和断裂能的提升效果最佳;相较普通混凝土,纳米材料改性RAC的断裂面出现更多贯通再生骨料的裂缝;纳米材料能够促进生成致密程度高的水化产物,减少混凝土界面过渡区内部的孔隙数量.
再生骨料混凝土(RAC)对实现建筑垃圾再利用、节约天然资源具有重要意
纳米材料粒径小、活性高,常被用来减少RAC微结构上的缺
鉴于此,本文采用非标准试件的三点弯曲梁断裂试验,来研究不同掺量的纳米SiO2(纳米硅溶胶和纳米SiO2粉末)和纳米CaCO3粉末对RAC断裂性能的影响,以双K断裂参数和断裂能指标评价纳米材料的改性效果,并结合纳米压痕试验来探究纳米SiO2和纳米CaCO3粉末对RAC微观结构的影响,以建立RAC宏观性能与微观性能之间的联系.
水泥为炼石牌P·O 42.5普通硅酸盐水泥,表观密度为3 150 kg/
Material | CaO | SiO2 | Al2O3 | Fe2O3 | SO3 | MgO | IL |
---|---|---|---|---|---|---|---|
Cement | 62.53 | 21.70 | 4.35 | 3.32 | 2.92 | 2.08 | 1.60 |
Fly ash | 11.20 | 46.32 | 29.51 | 6.78 | 0.57 | 1.34 | 2.63 |
Type of aggregate | Apparent density/ (kg· | Water absorption (by mass)/% | Crushing index (by mass)/% | Mud content(by mass)/% | Acicular content (by mass)/% |
---|---|---|---|---|---|
RCA | 2 653 | 4.24 | 13.0 | 1.24 | 0.20 |
NCA | 2 595 | 0.92 | 3.9 | 0.38 | 1.45 |
Type of nano‑material | w/% | pH valve | Density/(g·c | Viscosity/(mPa·s) | Specific surface area/ ( | Mean size/nm |
---|---|---|---|---|---|---|
NSL | 30.0 | 9.0 | 1.20 | 19.1 | 11.7 | |
NSP | 98.2 | 9.0 | 0.06(Tap) | 210 | 26.0 | |
NCP | 99.0 | 9.3 | 0.29(Bulk) | 25 | 40.0 |
本试验考虑4个变量,分别为再生粗骨料取代率、纳米硅溶胶掺量、纳米SiO2粉末掺量及纳米CaCO3粉末掺量.其中3种纳米材料等质量取代水泥,掺入再生粗骨料混凝土中.设置再生粗骨料取代率为0%、50%和100%,掺入纳米材料的试验组采用100%再生粗骨料取代率.参考已有研究成
Specimen No. | Mix proportion/(kg· | 28 d compressive strength/MPa | 28 d splitting tensile strength/MPa | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cement | Fly ash | River sand | Water | NCA | RCA | NSL | NSP | NCP | Water reducing agent | |||
NC | 273.00 | 117.000 | 616.50 | 164.000 | 1 250.00 | 0 | 0 | 0 | 0 | 4.91 | 42.36 | 5.16 |
RAC50 | 273.00 | 117.00 | 616.50 | 164.00 | 625.00 | 625.00 | 0 | 0 | 0 | 5.46 | 43.27 | 4.78 |
RAC100 | 273.00 | 117.00 | 616.50 | 164.00 | 0 | 1 250.00 | 0 | 0 | 0 | 6.01 | 45.08 | 4.57 |
NSL0.5 | 272.00 | 117.00 | 616.50 | 161.00 | 0 | 1 250.00 | 4.70 | 0 | 0 | 8.58 | 47.63 | 6.10 |
NSL1.0 | 270.00 | 117.00 | 616.50 | 158.00 | 0 | 1 250.00 | 9.00 | 0 | 0 | 9.75 | 48.36 | 5.73 |
NSL1.5 | 269.00 | 117.00 | 616.50 | 154.00 | 0 | 1 250.00 | 13.70 | 0 | 0 | 10.53 | 43.68 | 5.25 |
NSP0.5 | 272.00 | 117.00 | 616.50 | 164.00 | 0 | 1 250.00 | 0 | 1.40 | 0 | 8.97 | 47.35 | 5.72 |
NSP1.0 | 270.00 | 117.00 | 616.50 | 164.00 | 0 | 1 250.00 | 0 | 2.70 | 0 | 9.36 | 45.22 | 5.40 |
NSP1.5 | 269.00 | 117.00 | 616.50 | 164.00 | 0 | 1 250.00 | 0 | 4.10 | 0 | 10.14 | 43.52 | 5.11 |
NCP1.0 | 270.00 | 117.00 | 616.50 | 164.00 | 0 | 1 250.00 | 0 | 0 | 2.70 | 9.36 | 44.96 | 6.00 |
NCP2.0 | 268.00 | 117.00 | 616.50 | 164.00 | 0 | 1 250.00 | 0 | 0 | 5.50 | 10.14 | 47.53 | 5.57 |
NCP3.0 | 265.00 | 117.00 | 616.50 | 164.00 | 0 | 1 250.00 | 0 | 0 | 8.20 | 10.53 | 39.50 | 4.67 |
Note: NC represents normal concrete; RAC50 and RAC100 represents the replacement rate of recycled coarse aggregate is 50 %,100%,respectively;NSL0.5,NSL1.0 and NSL1.5 represents the content of NSL is 0.5%,1.0%,1.5%,respectively;NSP0.5,NSP1.0 and NSP1.5 represents the content of NSP is 0.5%,1.0%,1.5%,respectively;NCP1.0 ,NCP2.0 and NCP3.0 represents the content of NCP is 1.0%,2.0%,3.0%,respectively.
参考文献[

图1 三点弯曲梁试验简图
Fig.1 Sketch of three‑point bending beam experiment (size:mm)
采用位移控制下的静力加载模式进行加载.为获得稳定的加载数据,加载前对试件进行预压,预压后以5×1

图2 应变片布置图
Fig.2 Layout of strain gauge (size:mm)
采用非标准三点弯曲梁双K断裂参数计算方法,并结合前人经验加以修
(1) |
式中:h0为夹式引伸计刀口薄钢板厚度,m;ci为初始柔度,对P‑CMOD曲线上升段进行线性拟合,得到上升段的斜率即为ci.
试验选取单颗粒型圆润且有明显老砂浆附着的再生骨料,浇筑边长为30 mm的正方体小型试件.试件脱模养护至28 d后,先将其切割成边长为15 mm的正方体试样,再镶嵌、打磨抛光,用于纳米压痕试验.
将RAC中的老骨料-老砂浆界面过渡区记为ITZ1,老骨料-新砂浆界面过渡区记为ITZ2,老砂浆-新砂浆界面过渡区记为ITZ3.其中ITZ1和ITZ2采用的压痕点阵为11 μm×11 μm的正方形矩阵,需要说明的是,为避免相邻压痕点距离过于接近,导致局部区域变形,将相邻2个压痕点间距设置为10 μm(

图3 纳米压痕11×11和21×11点阵示意图
Fig.3 Schematic of nano indentation 11×11 and 21×11 lattice(size:μm)
试验采用载荷控制的加载模式.当压头压入待测试样表面后,先以恒定速率加载10 s至峰值荷载2 000 μN,持荷5 s后再以同样的速率卸载至0 μN. 将所获得的矩阵模量数据通过Origin软件绘制出该压痕区域的杨氏模量云图和分布图,并根据纳米压痕试验中各相的压痕杨氏模量值(
Type of phase | Pore | C‑S‑H | CH crystal | Unhydrated cement particles and other substances |
---|---|---|---|---|
Young's modulus/GPa | 0-10 | 10-35 | 35-50 | >50 |
由

图4 RAC100 组试件的P‑ε、P‑δ和P‑CMOD curve曲线
Fig.4 P‑ε,P‑δ,P‑CMOD curve of RAC100 specimens
Specimen No. | /kN | /kN | /GPa | /μm | /m | /(MPa· | of
| /(MPa· | of | /(N· |
---|---|---|---|---|---|---|---|---|---|---|
NC | 1.52 | 5.78 | 33.25 | 69.62 | 0.115 | 0.215 | 0.046 | 1.332 | 0.028 | 187.44 |
RAC50 | 1.43 | 5.61 | 31.63 | 60.42 | 0.110 | 0.202 | 0.054 | 1.175 | 0.028 | 152.37 |
RAC100 | 1.27 | 5.45 | 30.40 | 59.72 | 0.109 | 0.181 | 0.056 | 1.126 | 0.037 | 143.16 |
NSL0.5 | 1.79 | 6.31 | 25.41 | 65.28 | 0.100 | 0.250 | 0.062 | 1.132 | 0.091 | 141.67 |
NSL1.0 | 2.09 | 6.51 | 28.01 | 63.62 | 0.102 | 0.289 | 0.045 | 1.195 | 0.046 | 149.18 |
NSL1.5 | 1.71 | 5.82 | 22.34 | 77.16 | 0.104 | 0.238 | 0.075 | 1.117 | 0.069 | 142.65 |
NSP0.5 | 2.04 | 6.47 | 25.41 | 71.55 | 0.103 | 0.281 | 0.043 | 1.207 | 0.029 | 155.02 |
NSP1.0 | 1.90 | 6.43 | 24.44 | 70.28 | 0.101 | 0.264 | 0.050 | 1.159 | 0.055 | 142.78 |
NSP1.5 | 1.42 | 5.46 | 19.11 | 82.97 | 0.104 | 0.200 | 0.042 | 1.040 | 0.075 | 124.36 |
NCP1.0 | 1.83 | 5.86 | 27.42 | 64.22 | 0.105 | 0.255 | 0.087 | 1.139 | 0.040 | 144.30 |
NCP2.0 | 2.01 | 6.35 | 29.84 | 64.39 | 0.105 | 0.279 | 0.054 | 1.235 | 0.110 | 157.00 |
NCP3.0 | 1.62 | 6.04 | 29.80 | 64.87 | 0.107 | 0.228 | 0.047 | 1.218 | 0.088 | 138.69 |
由
由
试件预制裂缝上方断裂截面的破坏形态见

图5 试件预制裂缝上方断裂面破坏形态
Fig.5 Failure forms above the crack of specimens

图6 RAC试件典型界面过渡区的压痕点阵杨氏模量分布云图
Fig.6 Distribution cloudy map of typical interface indentation lattice Young's modulus of RAC specimens
Specimen No. | Thickness of ITZ1/μm | Mean Young's modulus of ITZ1/GPa | Thickness of ITZ2/μm | Mean Young's modulus of ITZ2/GPa | Thickness of ITZ3/μm | Mean Young's modulus of ITZ3/GPa |
---|---|---|---|---|---|---|
RAC100 | 40 | 23.09 | 60 | 27.34 | 50 | 26.68 |
NSL0.5 | 40 | 23.70 | 60 | 27.52 | 40 | 30.38 |
NSL1.0 | 40 | 22.48 | 60 | 28.88 | 40 | 25.34 |
NSL1.5 | 40 | 23.59 | 60 | 34.29 | 40 | 28.61 |
NSP0.5 | 40 | 23.09 | 60 | 25.72 | 40 | 26.57 |
NSP1.0 | 45 | 22.55 | 55 | 26.82 | 40 | 25.32 |
NSP1.5 | 40 | 22.98 | 60 | 35.36 | 45 | 29.55 |
NCP1.0 | 35 | 23.70 | 60 | 28.56 | 45 | 31.21 |
NCP2.0 | 40 | 22.60 | 55 | 27.65 | 40 | 32.32 |
NCP3.0 | 40 | 22.25 | 60 | 29.93 | 45 | 24.02 |

图7 掺入不同纳米材料的RAC界面过渡区的模量概率分布
Fig.7 Probability distribution of modulus in the interface transition region of RAC with different nano materials
由
由
由
此外,由
根据2.3中试件预制裂缝上方断裂面破坏形态可以看出,掺入纳米材料后,RAC断裂面中完整裸露的再生骨料数量减少,再生骨料断面和老砂浆断面数量增多.这可能是适量纳米SiO2和纳米CaCO3粉末改善了ITZ2和ITZ3界面的致密程度,提高了界面黏结强度,增加了2种界面破坏时所需要的能量,使得裂缝扩展更倾向于贯穿再生骨料或其表面附着的老砂浆.当该情况出现概率增加时,裂缝扩展至试件破坏时所需的总能量相应增加,最终表现为三点弯曲梁试件的起裂荷载、失稳荷载和断裂能增加.受起裂荷载和失稳荷载变化的影响,起裂韧度和失稳韧度也将获得相应的提高.但过多纳米SiO2和纳米CaCO3粉末易产生团聚现象,削弱改善效果.
(1)适当掺量的纳米SiO2和纳米CaCO3粉末能够有效提高RAC的抗压强度与劈裂抗拉强度.
(2)RAC的起裂韧度、失稳韧度和断裂能随着再生粗骨料取代率的增大而减小.掺入适量的纳米SiO2和纳米CaCO3粉末能够提高RAC的双K断裂韧度和断裂能.其中,1.0%纳米硅溶胶、0.5%纳米SiO2粉末、2.0%纳米CaCO3粉末提升效果最佳.掺入纳米材料可使RAC的起裂韧度超越普通混凝土,但失稳韧度仍达不到普通混凝土的标准.
(3)掺入纳米SiO2和纳米CaCO3粉末可将RAC内部老砂浆-新砂浆界面厚度减小5~10 μm,对老骨料-老砂浆界面内部物质含量几乎无影响,而在掺量适宜的情况下可提高老骨料-新砂浆和老砂浆-新砂浆界面内C‑S‑H凝胶含量,减少CH晶体含量、孔隙率和未水化水泥颗粒数量.掺入纳米SiO2试验组的老骨料-新砂浆和老砂浆-新砂浆界面内的CH晶体含量和孔隙率减少幅度大于掺入纳米CaCO3粉末的试验组.
参考文献
TANG Q, XIAO P, KOU C J, et al. Physical, chemical and interfacial properties of modified recycled concrete aggregates for asphalt mixtures: A review[J]. Construction and Building Materials, 2021, 312:125357. [百度学术]
GUO Z, TU A, CHEN C, et al. Mechanical properties, durability, and life‑cycle assessment of concrete building blocks incorporating recycled concrete aggregates[J]. Journal of Cleaner Production, 2018, 199:136‑149. [百度学术]
POURANIAN M R, SHISHEHBOR M. Sustainability assessment of green asphalt mixtures:A review[J]. Environments, 2019, 6(6):73. [百度学术]
罗素蓉, 承少坤, 肖建庄, 等.纳米改性再生骨料混凝土单轴受压疲劳性能[J].工程力学,2021,38(10):134‑144. [百度学术]
LUO Surong, CHENG Shaokun, XIAO Jianzhuang, et al. Fatigue behavior of nano‑modified recycled aggregate concrete under uniaxial compression[J]. Engineering Mechanics, 2021, 38(10):134‑144. (in Chinese) [百度学术]
高嵩, 宫尧尧, 班顺莉, 等. 离子侵蚀对再生混凝土多重界面区微观形貌影响[J]. 硅酸盐通报, 2020, 39(8):2567‑2573. [百度学术]
GAO Song, GONG Yaoyao, BAN Shunli, et al. Effect of ion erosion on microstructure of multiple interface zone of recycled concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(8):2567‑2573. (in Chinese) [百度学术]
曹瑜斌, 李秋义, 王忠星, 等. 显微硬度分析在再生混凝土多重界面结构中的应用[J]. 硅酸盐通报, 2017, 36(8):2678‑2682. [百度学术]
CAO Yubin, LI Qiuyi, WANG Zhongxing, et al. Reconstruction technique and application of multi interface structure model of recycled concrete[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(8):2678‑2682. (in Chinese) [百度学术]
FALLAHNEJAD H, DAVOODI M R, NIKBIN I M. The influence of aging on the fracture characteristics of recycled aggregate concrete through three methods[J]. Structural Concrete, 2021, 22(Suppl 1):E74‑E93. [百度学术]
GHORBEL E, WARDEH G. Influence of recycled coarse aggregates incorporation on the fracture properties of concrete[J]. Construction and Building Materials, 2017, 154(15):51‑60. [百度学术]
LI A, XIAO J Z, ZHANG Y M, et al. Fracture behavior of recycled aggregate concrete under three‑point bending[J]. Cement and Concrete Composites, 2019, 104:103353. [百度学术]
ZHANG H R, ZHAO Y X, MENG T, et al. Surface treatment on recycled coarse aggregates with nanomaterials[J]. Journal of Materials in Civil Engineering, 2016, 28(2):04015094. [百度学术]
ZENG W, ZHAO Y, ZHENG H, et al. Improvement in corrosion resistance of recycled aggregate concrete by nano silica suspension modification on recycled aggregates[J]. Cement and Concrete Composites, 2019, 106:103476. [百度学术]
LONG L, XUAN D, SOJOBI A O, et al. Development of nano‑silica treatment methods to enhance recycled aggregate concrete[J]. Cement and Concrete Composites, 2021, 118(6):103963. [百度学术]
张鹏, 亢洛宜, 郭进军, 等. 纳米 SiO2和PVA纤维增强水泥基复合材料的断裂性能[J]. 建筑材料学报, 2021, 24(5):908‑915. [百度学术]
ZHANG Peng, KANG Luoyi, GUO Jinjun, et al. Fracture properties of nano‑SiO2 and PVA fiber reinforced cementitious composites [J]. Journal of Building Materials, 2021, 25 (5):908‑915. (in Chinese) [百度学术]
MUKHARJEE B B, BARAI S V. Development of construction materials using nano‑silica and aggregates recycled from construction and demolition waste[J]. Waste Management & Research, 2015, 33(6):515‑523. [百度学术]
AGARWAL A, BHUSNUR S, PRIYA T S. Experimental investigation on recycled aggregate with laboratory concrete waste and nano‑silica[J]. Materials Today:Proceedings, 2020, 22(4):1433‑1442. [百度学术]
张鹏, 王磊, 王娟, 等. 纳米CaCO3和PVA纤维增强混凝土工作性及力学性能的研究[J]. 混凝土与水泥制品, 2020(3):42‑45. [百度学术]
ZHANG Peng, WANG Lei, WANG Juan, et al. Study on the workability and mechanical properties of nano‑CaCO3 and PVA fiber reinforced concrete[J]. China Concrete and Cement Products, 2020(3):42‑45. (in Chinese) [百度学术]
张鹏, 杨永辉, 亢洛宜, 等. 纳米碳酸钙和聚乙烯醇纤维增强混凝土抗弯拉性能[J]. 科学技术与工程, 2020, 20(11):4507‑4511. [百度学术]
ZHANG Peng, YANG Yonghui, KANG Luoyi, et al. Flexural properties of nano‑CaCO3 and PVA fiber reinforced concrete[J]. Science Technology and Engineering, 2020, 20(11):4507‑4511. (in Chinese) [百度学术]
LI W, LUO Z, LONG C, et al. Effects of nanoparticle on the dynamic behaviors of recycled aggregate concrete under impact loading[J]. Materials & Design, 2016, 112(15):58‑66. [百度学术]
罗素蓉, 白俊杰. 纳米改性对再生混凝土双K断裂参数的影响[J]. 水利学报, 2018, 49(6):670‑677. [百度学术]
LUO Surong, BAI Junjie. Effect of nano‑modification on double‑K fracture parameters of recycled concrete[J]. Journal of Hydraulic Engineering, 2018, 49(6):670‑677. (in Chinese) [百度学术]
中华人民共和国住房和城乡建设部. 混凝土用再生粗骨料:GB/T 25177—2010[S]. 北京:中国标准出版社, 2011. [百度学术]
Ministry of Housing and Urban‑Rural Development of the People's Republic of China. Recycled coarse aggregate for concrete:GB/T 25177—2010[S]. Beijing:Standards Press of China, 2011. (in Chinese) [百度学术]
田竞, 苏骏, 吴鹏,等. 纳米CaCO3对混凝土抗冲磨性能影响试验研究[J]. 混凝土与水泥制品, 2020(6):9‑12. [百度学术]
TIAN Jing, SU Jun, WU Peng, et al. Experimental research on abrasion resistance of concrete mixed with nano‑CaCO3[J]. China Concrete and Cement Products, 2020(6):9‑12. (in Chinese) [百度学术]
魏荟荟. 纳米CaCO3对水泥基材料的影响及作用机理研究[D]. 哈尔滨:哈尔滨工业大学, 2013. [百度学术]
WEI Huihui. Study on the effect and mechanism of nano CaCO3 on cement‑based materials[D]. Harbin:Harbin Institute of Technology, 2013. (in Chinese) [百度学术]
闫玉红, 谢威章, 王子颜, 等. 纳米CaCO3对混凝土抗压和劈拉强度影响试验研究[J]. 建材技术与应用, 2019(5):1‑5. [百度学术]
YAN Yuhong, XIE Weizhang, WANG Ziyan, et al. Experimental study on effect of nano‑CaCO3 on compressive strength and splitting tensile strength of concrete[J]. Research & Application of Building Materials, 2019(5):1‑5. (in Chinese) [百度学术]
XU S, LI Q, WU Y, et al. RILEM standard:Testing methods for determination of the double‑K criterion for crack propagation in concrete using wedge‑splitting tests and three‑point bending beam tests, recommendation of RILEM TC265‑TDK[J]. Materials and Structures, 2021, 54(6):1‑11. [百度学术]
吴智敏, 徐世烺, 丁一宁, 等. 砼非标准三点弯曲梁试件双K断裂参数[J]. 中国工程科学, 2001, 3(4):76‑81. [百度学术]
WU Zhimin, XU Shilang, DING Yining, et al. The double‑K fracture parameter of concrete for non‑standard three point bending beam specimens[J]. Engineering Science, 2001, 3(4):76‑81. (in Chinese) [百度学术]
GUINEA G V, PASTOR J Y, PLANAS J, et al. Stress intensity factor, compliance and CMOD for a general three‑point bend beam[J]. International Journal of Fracture, 1998, 89(2):103‑116. [百度学术]
吴恺云, 罗素蓉, 郑建岚. 基于非接触式观测技术的再生骨料混凝土断裂性能分析[J]. 工程力学, 2022, 39(3):147‑157. [百度学术]
WU Kaiyun, LUO Surong, ZHENG Jianlan. Fracture propertie analysis of recycled aggregate concrete based on digital image correlation technique [J]. Engineering Mechanics, 2022, 39(3):147‑157. (in Chinese) [百度学术]
徐晶, 王彬彬, 赵思晨. 纳米改性混凝土界面过渡区的多尺度表征[J]. 建筑材料学报, 2017, 20(1):7‑11. [百度学术]
XU Jing, WANG Binbin, ZHAO sichen. Multi‑scale characterization of interfacial transition zone in nano‑modified concrete[J]. Journal of Building Materials, 2017, 20(1):7‑11. (in Chinese) [百度学术]
ZHAO S J, SUN W. Nano‑mechanical behavior of a green ultra‑high performance concrete[J]. Construction and Building Materials, 2014, 63:150‑160. [百度学术]
LI W, XIAO J, SUN Z, et al. Interfacial transition zones in recycled aggregate concrete with different mixing approaches[J]. Construction and Building Materials, 2012, 35:1045‑1055. [百度学术]
LIU R G, HAN F H, YAN P Y. Characteristics of two types of C‑S‑H gel in hardened complex binder pastes blended with slag[J]. Science China Technological Sciences, 2013, 56(6):1395‑1402. [百度学术]
罗素蓉, 白俊杰. 纳米改性对再生混凝土双K断裂参数的影响[J]. 水利学报,2018,49(6):670‑677. [百度学术]
LUO Surong, BAI Junjie. Effect of nano‑modification on double‑K fracture parameters of recycled concrete[J]. Journal of Hydraulic Engineering, 2018, 49(6):670‑677. (in Chinese) [百度学术]