摘要
将再生砖粉和再生混凝土粉混合组成再生复合微粉,取代部分水泥制备再生复合微粉混凝土,对其进行干湿循环下硫酸盐侵蚀试验和微观结构表征,并基于其微观结构演化过程建立了SO侵蚀模型,揭示了硫酸盐侵蚀下再生复合微粉混凝土的劣化机理.结果表明:再生复合微粉混凝土的抗压强度损失率随着干湿循环次数的增加先降低后升高,且随着再生复合微粉取代率的增加,其变化幅度增大;低取代率的再生复合微粉较好地发挥了填充效应和成核作用,促进水泥水化,但其多孔性的初始缺陷提供了大量侵蚀通道,并造成孔隙内部压力分布不均,导致再生复合微粉混凝土的耐久性能加速劣化.
关键词
废弃黏土砖和混凝土占建筑垃圾总量的80%以
本文通过开展再生复合微粉混凝土(RPC)的硫酸盐侵蚀试验,探究了不同干湿循环次数下RPC力学性能的变化规律;通过压汞试验(MIP)、X射线衍射分析仪(XRD)和扫描电子显微镜(SEM),表征了RPC微观结构的演化过程,并基于此建立了SO侵蚀模型,揭示了硫酸盐侵蚀下RPC的劣化机理,为再生微粉混凝土的应用推广提供理论支撑.
陕西省翼东水泥厂生产的盾石牌P·O 42.5普通硅酸盐水泥(C);粗骨料(CA)为粒径5~20 mm的连续级配碎石;细骨料(FA)为细度模数2.62的普通中砂;陕西建新环保科技有限公司生产的再生黏土砖和再生混凝土粗骨料,经颚式破碎机破碎成粒径为0.16~4.75 mm的再生细骨料,用球研磨机根据不同时间段研磨成粒径0.16 mm以下的再生砖粉(BP)和再生混凝土粉(CP),并以不同质量比混合组成再生复合微粉(RP);外加剂为聚羧酸液体高效减水剂(HPWR)和高性能引气剂(AE).再生砖粉、再生混凝土粉和水泥的化学组
Material | Chemical composition (by mass)/% | Specific surface area/(m²·k | Water demand ratio (by mass)/% | Density/ (kg· | ||||||
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | K2O | SO3 | MgO | ||||
BP | 63.47 | 17.51 | 8.26 | 1.84 | 2.85 | 0.13 | 1.19 | 424 | 104 | 2 620 |
CP | 30.20 | 7.81 | 3.05 | 42.66 | 1.43 | 0.45 | 2.14 | 457 | 103 | 2 560 |
C | 20.42 | 4.16 | 2.83 | 60.74 | 0.46 | 2.75 | 1.60 | 343 | 35 | 3 150 |
再生复合微粉中再生砖粉和再生混凝土粉的质量比mBP∶mCP为8∶2、6∶4,并分别记为Ⅰ、Ⅱ,以其制备的RPC分别记为RPC‑Ⅰ、RPC‑Ⅱ;再生复合微粉的取代率w为0%(对照组纯水泥混凝土NAC)、15%、30%.再生复合微粉混凝土试件尺寸为100 mm×100 mm×100 mm,其配合比见
Specimen | Mix proportion/(kg· | Slump/mm | |||||||
---|---|---|---|---|---|---|---|---|---|
C | BP | CP | FA | CA | W | HPWR | AE | ||
NAC | 370.000 | 0 | 0 | 610.000 | 1 140.000 | 178.000 | 1.443 | 0.148 | 95 |
RPC‑15%‑Ⅰ | 314.500 | 44.400 | 11.100 | 610.000 | 1 140.000 | 178.000 | 1.998 | 0.148 | 99 |
RPC‑15%‑Ⅱ | 314.500 | 33.300 | 22.200 | 610.000 | 1 140.000 | 178.000 | 1.702 | 0.148 | 92 |
RPC‑30%‑Ⅰ | 259.000 | 88.800 | 22.200 | 610.000 | 1 140.000 | 178.000 | 2.146 | 0.148 | 92 |
RPC‑30%‑Ⅱ | 259.000 | 66.600 | 44.400 | 610.000 | 1 140.000 | 178.000 | 2.497 | 0.148 | 95 |
根据GB/T 50082-2009《普通混凝土长期性能和耐久性能试验方法标准》,试件在养护至28 d龄期的前2 d从标准养护室取出,擦干表面水分,烘干冷却.采用室温自然浸泡和电热鼓风干燥箱来模拟干湿循环过程:将试件置于装有质量分数为5%Na2SO4溶液的试件盒中浸泡16 h(浸泡过程中保持溶液质量分数不变);取出试件并擦干其表面水分,冷却2 h;将试件放入80 ℃的电热鼓风干燥箱干燥6 h,此为1个循环.每隔15次循环进行1次抗压强度测试,当循环次数n=90时,结束试验.每组3个试件,结果取平均值.
硫酸盐干湿循环下NAC和RPC抗压强度的损失率见

图1 硫酸盐干湿循环下NAC和RPC抗压强度的损失率
Fig.1 Compressive strength loss rate of NAC andRPC under dry‑wet cycle of sulfate
NAC、RPC的孔隙率和孔径分布见

图2 NAC、RPC的孔隙率和孔径分布
Fig.2 Porosity and pore size distribution of NAC and RPC
依据孔级配理
NAC和RPC的压汞孔隙分布见

图3 NAC和RPC的压汞孔隙分布
Fig.3 Mercury intrusion pore distribution of NAC and RPC
临界孔径的大小对多孔材料的渗透性、离子扩散和物质传输具有重要影
NAC和RAC的XRD图谱见

图4 NAC和RAC的XRD图谱
Fig.4 XRD patterns of NAC and RAC
RPC‑15%‑Ⅱ砂浆基体和界面过渡区(ITZ)的微观形貌见

图5 RPC‑15%‑Ⅱ砂浆基体和界面过渡区(ITZ)的微观形貌
Fig.5 Morphologies of mortar matrix and interface transition zone(ITZ) of RPC‑15%‑Ⅱ
SO侵蚀模型示意图见

图6 SO侵蚀模型示意图
Fig.6 Schematic diagrams of SO attack model
为阐明硫酸盐干湿循环下RPC的劣化机
(1) |
(2) |
(3) |
又根据Fick第二定律,浓度是动态变化的,是1个随时间由低到高、逐渐达到饱和的过
(4) |
令: | (5) |
即: | (6) |
式中:S为水泥相关系数;c(t)为基体内任一点(x,y,z)在时间t的SO浓度;为生成物的膨胀率.
基体内微单元体的体积应变ε为:
(7) |
假设混凝土为各向同性,则由体积膨胀引起的膨胀应力相同,即:
(8) |
式中:为基体内任一点在t时间的膨胀应力;B为混凝土体积模量.
当膨胀应力大于混凝土内部毛细孔壁的极限拉应力时,孔隙和ITZ处将产生沿骨料和垂直于骨料方向的膨胀性裂缝,并不断向水泥基体延伸,最终形成贯通裂缝和空洞.
基于上述分析,在硫酸盐化学侵蚀和物理结晶作用下,RP的多孔性为SO提供了原始侵蚀通道和侵蚀产物的结晶空间,造成SO更易向RP区域扩散,侵蚀产物在RP孔隙内部快速生长结晶,导致裂缝在RP区域快速发展.由于RP抵抗开裂的能力较弱,RP区域快速退出工作,这导致RPC基体内部侵蚀通道增多,加速了SO朝基体内部扩散,最终造成RPC劣化比NAC更严重,这是RPC抵抗硫酸盐侵蚀能力弱于NAC的根本原因.
(1)再生复合微粉(RP)等质量替代水泥后,再生复合微粉混凝土(RPC)的抗压强度损失率随着干湿循环次数的增加先降低后升高,且随着RP取代率的增加其变化幅度增大,RP取代率为15%、再生砖粉和再生混凝土粉的质量比mBP∶mCP=6∶4的再生复合微粉混凝土(RPC‑15%‑Ⅱ)抗硫酸侵蚀性能最优.
(2)再生复合微粉的掺入改善了混凝土的孔隙结构,RPC‑15%‑Ⅱ的孔隙率略增、临界孔径减小、孔隙结构的连通性降低.但随着干湿循环的进行,其初始缺陷提供了大量的侵蚀通道并造成孔隙内部压力分布不均,加速了孔隙结构的劣化.
(3)低掺量再生复合微粉可以较好地发挥填充效应和成核作用,促进水泥水化,增强骨料和浆体的黏结力,提高砂浆基体和界面过渡区(ITZ)的密实度.但再生复合微粉的多孔性加速了侵蚀产物在ITZ处的聚集,降低了骨料和砂浆的黏结能力,ITZ出现了垂直于和平行于界面的贯通裂缝.再生复合微粉的多孔性成为RPC耐久性能加速劣化的主要原因.
(4)SO侵蚀模型阐明了硫酸盐侵蚀下混凝土内部损伤劣化过程,建立了膨胀应力与SO浓度之间关系的定量表述,可用于评估和预测硫酸盐干湿循环下再生复合微粉混凝土内部损伤和劣化程度.
参考文献
XIAO J Z, MA Z M, SUI T B, et al. Mechanical properties of concrete mixed with recycled powder produced from construction and demolition waste[J]. Journal of Cleaner Production, 2018, 188:720‑731. [百度学术]
SUN C, CHEN L L, XIAO J Z, et al. Compound utilization of construction and industrial waste as cementitious recycled powder in mortar[J]. Resources, Conservation and Recycling, 2021, 170:105561. [百度学术]
TANG Q, MA Z M, WU H X, et al. The utilization of eco‑friendly recycled powder from concrete and brick waste in new concrete:A critical review[J]. Cement and Concrete Composites, 2020, 114:103807. [百度学术]
ZHAO Y S, GAO J M, LIU C B, et al. The particle‑size effect of waste clay brick powder on its pozzolanic activity and properties of blended cement[J]. Journal of Cleaner Production, 2020, 242:118521. [百度学术]
刘超, 胡天峰, 刘化威, 等. 再生复合微粉对混凝土力学性能及微观结构的影响[J]. 建筑材料学报, 2021, 24(4):726‑735. [百度学术]
LIU Chao, HU Tianfeng, LIU Huawei, et al. Effect of recycled composite micro‑powder on mechanical properties and microstructure of concrete[J]. Journal of Building Materials, 2021, 24(4):726‑735.(in Chinese) [百度学术]
WU H X, YANG D Y, XU J G, et al. Water transport and resistance improvement for the cementitious composites with eco‑friendly powder from various concrete wastes[J]. Construction and Building Materials, 2021, 290:123247. [百度学术]
MA Z M, LI W, WU H X, et al. Chloride permeability of concrete mixed with activity recycled powder obtained from C&D waste[J]. Construction and Building Materials, 2019, 199:652‑663. [百度学术]
高润东. 复杂环境下混凝土硫酸盐侵蚀微-宏观劣化规律研究[D]. 北京:清华大学, 2010. [百度学术]
GAO Rundong. Micro‑macro degradation regularity of sulfate attack on concrete under complex environments[D]. Beijing:Tsinghua University, 2010.(in Chinese) [百度学术]
XIE F, LI J P, ZHAO G W, et al. Experimental investigations on the durability and degradation mechanism of cast‑in‑situ recycled aggregate concrete under chemical sulfate attack[J]. Construction and Building Materials, 2021, 297(5):123771. [百度学术]
LIKES L, MARKANDEYA A, HAIDER M M, et al. Recycled concrete and brick powders as supplements to Portland cement for more sustainable concrete[J]. Journal of Cleaner Production, 2022,364:132651. [百度学术]
WU H X, WANG C Q, MA Z M. Drying shrinkage, mechanical and transport properties of sustainable mortar with both recycled aggregate and powder from concrete waste[J]. Journal of Building Engineering, 2022,49:104048. [百度学术]
刘开伟, 程星星, 孙道胜, 等. 硫酸钠溶液pH值对硅酸盐水泥砂浆析钙及侵蚀产物的影响[J]. 建筑材料学报, 2019, 22(2):179‑185. [百度学术]
LIU Kaiwei, CHENG Xingxing, SUN Daosheng, et al. Effects of pH value of sulfate solution on calcium leaching and products of cement mortars[J]. Journal of Building Materials, 2019, 22(2):179‑185.(in Chinese) [百度学术]
GUO Y C, WU S L, LYU Z H, et al. Pore structure characteristics and performance of construction waste composite powder‑modified concrete[J]. Construction and Building Materials, 2021, 269:121262. [百度学术]
吴中伟, 廉惠珍. 高性能混凝土[M]. 北京:中国铁道出版社, 1999:22‑25. [百度学术]
WU Zhongwei, LIAN Huizhen. High performance concrete [M]. Beijing:China Railway Press, 1999:22‑25.(in Chinese) [百度学术]
ALIGIZAKI K K. Pore structure of cement‑based materials:Testing, interpretation and requirements[M]. London:Chemical Rubber Company Press, 2005:48‑52. [百度学术]
YANG R W, ZHANG M L, LI Z P, et al. Microstructural insight into the deterioration mechanism of the mortar subject to the combined action of external sulfate attack and cyclic wetting‑drying[J]. Construction and Building Materials, 2022, 317:125484. [百度学术]