摘要
用数值模拟建立了三维随机骨料模型,分析了不同粗骨料形状、含量、粒径以及多粒径组合粗骨料对混凝土氯离子扩散的影响,并结合快速氯离子迁移系数法进行了验证.结果表明:相同体积粗骨料的形状特征参数越小,氯离子扩散受到的阻碍作用越明显;在一定浓度范围内,氯离子扩散系数随着粗骨料含量的增加逐渐减小;当粗骨料体积分数确定时,氯离子扩散系数随着粗骨料粒径的增加而减小;在相同体积分数下,氯离子扩散系数随着多粒径组合粗骨料粒径数的增加而增加.
关键词
由于钢筋锈蚀、冻融破坏以及侵蚀环境下的物理-化学作用,导致混凝土结构耐久性破坏,其中氯离子侵蚀造成的钢筋锈蚀是主要原
粗骨料形状对氯离子扩散有着重要影响,但目前对于粗骨料的形状和多粒径组合粗骨料对氯离子扩散的影响研究较少. 本文建立了三维随机骨料模型,通过试验研究和数值模拟相结合,从粗骨料的形状、含量、粒径以及多粒径组合粗骨料等方面,研究了粗骨料对氯离子扩散的影响以及对应状态下混凝土中氯离子的传输规律.
水泥为P·O 42.5普通硅酸盐水泥,其矿物组成(质量分数,本文涉及的组成、比值等除特殊说明外均为质量分数或质量比)见
C3S | C2S | C3A | C4AF | Gypsum |
---|---|---|---|---|
59.78 | 16.24 | 6.88 | 11.70 | 6.00 |
按m(水泥)∶m(水)∶m(细骨料)=1.0∶0.4∶1.7制备砂浆,取不同体积的砂浆与粗骨料混合制成混凝土,其配合比见
Specimen | Coarse aggregate composition | Specimen | Coarse aggregate composition | ||||||
---|---|---|---|---|---|---|---|---|---|
Shape | n | DS/mm | φa/% | Shape | n | DS/mm | φa/% | ||
A0 | Sphere | 1 | 25.0 | 0 | C1 | Cube | 1 | 25.00 | |
A1 | Sphere | 1 | 25.0 | 2.00 | C2 | Rectangular | 1 | 25.00 | |
A2 | Sphere | 1 | 25.0 | 6.00 | C3 | Cylindrical | 1 | 25.00 | |
A3 | Sphere | 1 | 25.0 | 10.00 | D1 | Sphere | 2 | 25.0 | 12.50 |
A4 | Sphere | 1 | 25.0 | 20.00 | 20.0 | 12.50 | |||
A5 | Sphere | 1 | 25.0 | 25.00 | D2 | Sphere | 3 | 25.0 | 6.25 |
A6 | Sphere | 1 | 25.0 | 30.00 | 20.0 | 6.25 | |||
A7 | Sphere | 1 | 25.0 | 40.00 | 16.0 | 1.25 | |||
B1 | Sphere | 1 | 20.0 | 25.00 | D3 | Sphere | 4 | 25.0 | 6.25 |
B2 | Sphere | 1 | 30.0 | 25.00 | 20.0 | 6.25 | |||
B3 | Sphere | 1 | 40.0 | 25.00 | 16.0 | 6.25 | |||
9.5 | 6.25 |
根据GB/T 50082—2009《普通混凝土长期性能和耐久性能试验方法标准》,浇筑100×50 mm的圆柱体混凝土试件,标准养护24 h后拆模,养护至试验龄期,RCM测试后将试件劈开.将2个试件的长方形截面并排放置,方向向上,喷洒0.1 mol/L的AgNO3溶液.根据显色区域深度,测得氯离子扩散深度.RCM法得到的离子扩散系数[
式中:为阳极溶液初始温度和最终温度的平均值,℃;为混凝土试件的厚度,精确到0.1 mm;为施加的电压值,V;为试验持续时间,h.
氯离子在混凝土中的扩
式中:c为氯离子摩尔浓度;为氯离子扩散系数;、y和z为三维空间的数轴.
研究氯离子在混凝土中的扩散时,主要是研究氯离子的渗透深度,即轴方向上的扩散,其边界条件和初始条件可假定为:
(4) |
(5) |
式中:为初始混凝土结构中的氯离子浓度;为混凝土表面的氯离子浓度.
对式(2)进行变换,得到:
(6) |
式中:为时刻和侵蚀深度氯离子的浓度;为误差函数.
粗骨料对混凝土氯离子扩散有显著的影响,主要表现为:稀释效应和曲折效应,起到阻碍氯离子扩散的作用;在粗骨料和砂浆之间存在ITZ,主要表现为界面区效应,将提高氯离子的扩散速
氯离子在混凝土中经过不同形状粗骨料的扩散路径示意图见

图1 氯离子在混凝土中经过不同形状粗骨料的扩散路径示意图
Fig.1 Schematic diagram of chloride ion diffusion path in concrete for different shapes of coarse aggregate
为了表征粗骨料的形状,将一些基本参数进行组合,可以得到表示颗粒形状的特征参数:球形度和形状因子. 球形
(7) |
(8) |
(9) |
式中:为外切长方体的最大尺寸长度;为外切长方体的最小尺寸长度;为外切长方体的中间尺寸长度;为颗粒投影面积;为颗粒投影周长;k1、k2分别为形状因子、球形度的系数.
对形状因子、球形度和形状特征参数分别与氯离子扩散系数做相关性分析,得到相关度r为:
(10) |
r的取值范围为[-1,1],且 |r| 越接近于1,表明相关程度越高.
令k= k1/k2,改变k值,得到相关度r与k值的关系,结果见

图2 相关度r与k值的关系
Fig.2 Relationship between r and k value
混凝土氯离子扩散系数与球形度、形状因子、形状特征参数之间的关系见

图3 混凝土氯离子扩散系数与球形度、形状因子、形状特征参数之间的关系
Fig.3 Relationship between chloride diffusion coefficient and SP,R and F
粗骨料体积分数、球体直径与混凝土氯离子扩散系数的关系见

图4 粗骨料体积分数、球体直径与混凝土氯离子扩散系数的关系
Fig.4 Relationship between 、 of coarse aggregate and chloride ion diffusion coefficient of concrete
氯离子浓度随扩散深度的变化见

图5 氯离子浓度随扩散深度的变化
Fig.5 Change of chloride concentration with diffusion depth
多粒径组合粗骨料的粒径数与氯离子扩散系数、ITZ体积的关系见

图6 多粒径组合粗骨料的粒径数与氯离子扩散系数、ITZ体积的关系
Fig.6 Relationship between n and chloride diffusion coefficient and ITZ volume
(1)随着粗骨料形状特征参数的减小,氯离子扩散系数降低,粗骨料对氯离子在混凝土中扩散的阻碍作用与粗骨料形状呈强相关.
(2)随着球体粗骨料体积分数的增加,氯离子扩散系数减小,此时稀释效应占主导地位,使氯离子在混凝土中传输的阻碍作用增加.
(3)当粗骨料的体积分数为25.00%,其粒径由20 mm增加到40 mm时,混凝土的氯离子扩散系数由水泥砂浆氯离子扩散系数的86.7%降低到72.0%,此时曲折效应占主导地位,粗骨料粒径的增大阻碍了氯离子在混凝土中的传输;随着多粒径组合粗骨料粒径数的增加,粗骨料对氯离子扩散的促进作用增强.
(4)建立了三维随机粗骨料模型,数值模拟结果与试验结果的变化趋势和数值对应性良好,验证了通过数值模拟研究氯离子扩散的合理性.
参考文献
杨燕, 谭康豪, 覃英宏. 混凝土内氯离子扩散影响因素的研究综述 [J]. 材料导报, 2021, 35(13):13109‑13118. [百度学术]
YANG Yan, TAN Kanghao, QIN Yinghong. Review of research on the influencing factors of chloride ion diffusion in concrete[J]. Materials Reports, 2021, 35(13):13109‑13118.(in Chinese) [百度学术]
王胜年, 曾俊杰, 范志宏. 基于长期暴露试验的海工高性能混凝土耐久性分析[J]. 土木工程学报, 2021, 54(10):82‑89. [百度学术]
WANG Shengnian, ZENG Junjie, FAN Zhihong. Analysis on durability of marine HPC based on long‑term exposure experiment[J]. China Civil Engineering Journal, 2021, 54(10):82‑89.(in Chinese) [百度学术]
金伟良, 赵羽习. 混凝土结构耐久性研究的回顾与展望[J]. 浙江大学学报(工学版), 2002, 36(4):371‑380, 403. [百度学术]
JIN Weiliang, ZHAO Yuxi. State‑of‑the‑art on durability of concrete structures[J]. Journal of Zhejiang University(Engineering Science), 2002, 36(4):371‑380, 403.(in Chinese) [百度学术]
王立成, 王吉忠. 混凝土中氯离子扩散过程的细观数值模拟研究[J]. 建筑结构学报, 2008, 29(增刊1):192‑196. [百度学术]
WANG Licheng, WANG Jizhong. Mesoscopic simulation for chloride diffusion in concrete[J]. Journal of Building Structures, 2008, 29(Suppl 1):192‑196.(in Chinese) [百度学术]
SHAFIKHANI M, CHIDIAC S E. A holistic model for cement paste and concrete chloride diffusion coefficient[J]. Cement and Concrete Research, 2020, 133:106049. [百度学术]
陈宣东, 刘光焰, 虞爱平, 等. 基于二维混凝土随机细观模型氯离子扩散数值模拟[J]. 材料科学与工程学报, 2020, 38(4):669‑673. [百度学术]
CHEN Xuandong, LIU Guangyan, YU Aiping, et al. Numerical simulation of chloride diffusion based on 2D concrete random mesoscopic model[J]. Journal of Materials Science and Engineering, 2020, 38(4):669‑673.(in Chinese) [百度学术]
乔宏霞, 乔国斌, 路承功. 混凝土中氯离子传输模拟及速率分析[J]. 华中科技大学学报(自然科学版), 2022, 50(2):19‑25. [百度学术]
QIAO Hongxia, QIAO Guobin, LU Chenggong. Simulation and velocity analysis of chloride ion transport in concrete [J]. Journal of Huazhong University of Science and Technology(Natural Science), 2022, 50(2):19‑25. (in Chinese) [百度学术]
周双喜, 韩震, 魏星, 等.骨料含量和界面区体积对混凝土氯离子扩散性能的影响[J]. 建筑材料学报, 2018, 21(3):351‑357. [百度学术]
ZHOU Shuangxi, HAN Zhen, WEI Xing, et al. Influence of aggregate contents and volume of interfacial transition zone on chloride ion diffusion properties of concrete[J]. Journal of Building Materials, 2018, 21(3):351‑357.(in Chinese) [百度学术]
李杰, 孔祥习. 混凝土氯离子扩散性能影响试验等效数值模拟[J]. 水利水电技术, 2018, 49(9):184‑190. [百度学术]
LI Jie, KONG Xiangxi. Equivalent numerical simulation on experiment of influence from diffusion performance of chloride ion in concrete[J]. Water Resources and Hydropower Engineering, 2018, 49(9):184‑190.(in Chinese) [百度学术]
YANG C C, SU J K. Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar[J]. Cement and Concrete Research, 2002, 32(10):1559‑1565. [百度学术]
王元战, 吕彦伟, 龙俞辰, 等. 粗骨料对混凝土界面过渡区氯离子扩散性能影响[J]. 海洋工程, 2018, 36(2):73‑82. [百度学术]
WANG Yuanzhan, LÜ Yanwei, LONG Yuchen, et al. Effect of coarse aggregate on chloride diffusion properties in the interfacial transition zone of concrete[J]. The Ocean Engineering, 2018, 36(2):73‑82.(in Chinese) [百度学术]
杨钱荣, 朱蓓蓉. 混凝土渗透性的测试方法及影响因素[J]. 低温建筑技术, 2003(5):7‑10. [百度学术]
YANG Qianrong, ZHU Beirong. Testing methods on the permeability and influence factors of permeability of concrete[J]. Low Temperature Architecture Technology, 2003(5):7‑10.(in Chinese) [百度学术]
田野, 纪豪栋, 田卒士, 等. 混凝土中氯盐传输的三维细观模型[J]. 建筑材料学报, 2020, 23(2):286‑291. [百度学术]
TIAN Ye, JI Haodong, TIAN Zushi, et al. 3D Mesoscopic model for chloride transport in concrete[J]. Journal of Building Materials, 2020, 23(2):286‑291.(in Chinese) [百度学术]
YANG C C. Effect of the interfacial transition zone on the transport and the elastic properties of mortar [J]. Magazine of Concrete Research, 2003, 55(4):305‑312. [百度学术]
BASHEER L, KROPP J, CLELAND D J. Assessment of the durability of concrete from its permeation properties:A review[J]. Construction and Building Materials, 2001, 15(2):93‑103. [百度学术]
汪超, 张同生, 谢晓庚, 等. 基于骨料球形度的透水混凝土配合比设计方法[J]. 建筑材料学报, 2022, 25(3):235‑241. [百度学术]
WANG Chao, ZHANG Tongsheng, XIE Xiaogeng, et al. Mix proportion design method of pervious concrete based on aggregate sphericity[J]. Journal of Building Materials, 2022, 25(3):235‑241.(in Chinese) [百度学术]
NAMBIAR E K K, RAMAMURTHY K. Air‑void characterisation of foam concrete[J]. Cement and Concrete Research, 2007, 37(2):221‑230. 2013. (in Chinese) [百度学术]
马昆林, 龙广成, 谢友均, 等. 橡胶颗粒对自密实混凝土性能的影响[J]. 硅酸盐学报, 2014, 42(8):966‑973. [百度学术]
MA Kunlin, LONG Guangcheng, XIE Youjun, et al. Effect of rubber particles on properties of self‑compacting concrete[J]. Journal of the Chinese Ceramic Society, 2014, 42(8):966‑973. (in Chinese) [百度学术]
陈俊豪. 地铁沿线建筑物振动与二次噪声相干性及预测研究[D]. 成都:西南交通大学, 2019. [百度学术]
CHEN Junhao. Study on coherence and prediction of vibration and re‑radiated noise in buildings caused by subway trains[D]. Chengdu:Southwest Jiaotong University, 2019. (in Chinese) [百度学术]
杨永斌. 高速列车所引致之土壤振动分析[D]. 台北:台湾大学, 1996. [百度学术]
YANG Yongbin. Analysis on soil vibration induced by high‑speed railways[D]. Taibei:Taiwan University, 1996. (in Chinese) [百度学术]
陈俊豪, 柯文华, 魏晓, 等. 地铁车内噪声特性试验研究[J]. 铁道标准设计, 2018, 62(10):52‑57. [百度学术]
CHEN Junhao, KE Wenhua, WEI Xiao, et al. Experimental study on noise characteristics of metro cars[J]. Railway Standard Design, 2018, 62(10):52‑57. (in Chinese) [百度学术]
陈俊豪, 柯文华, 陈嵘, 等. 时速130 km/h城际铁路振源特性试验研究[J]. 铁道标准设计, 2018, 62(7):63‑67. [百度学术]
CHEN Junhao, KE Wenhua, CHEN Rong, et al. Experimental study on vibration source characteristics of 130 km/h intercity railway[J]. Railway Standard Design, 2018, 62(7):63‑67. (in Chinese) [百度学术]
廖振鹏. 工程波动理论导论[M]. 北京:科学出版社, 2002. [百度学术]
LIAO Zhenpeng. Introduction to wave motion theories in engineering[M]. Beijing:Science Press, 2002. (in Chinese) [百度学术]
YU Xuanrui, LIU Huiping. Chloride ion diffusion in reinforced concrete structure based on Bayesian mechanical algorithm[J]. Journal of Building Materials, 2022, 25(12):1248‑1254. (in Chinese) [百度学术]