摘要
基于图像分析技术,分析了粉煤灰颗粒群的形貌特征,提出了可量化表征颗粒群形貌的参数,并以此作为区分粉煤灰颗粒群形貌品质的判据之一.结果表明:粉煤灰颗粒群的形貌特征可用不同圆度等级下的颗粒面积占比来表征,其中SR>0.8/SR>0.5(圆度R>0.8与R>0.5颗粒的表面积比)最能体现粉煤灰颗粒群形貌的特征差异;当图像放大200倍时,高形貌品质粉煤灰的SR>0.8/SR>0.5可达到10%以上,与非球状颗粒粉体形貌存在明显的差异.
水泥基材料中,粉体颗粒的形貌特征是影响其工作性能、力学性能和耐久性能的重要因素之一.基于粉煤灰(FA)的形成原
本文针对应用于水泥和混凝土的粉煤灰,通过测量、统计和对比分析粉煤灰与非球状颗粒粉体的多种形貌参数,确定了适合的表征参数和放大倍率区间,可作为评定粉煤灰形貌品质的判据之一.
原材料包括:Ⅰ级粉煤灰F1;Ⅱ级粉煤灰F2‑1、F2‑2、F2‑3;掺有非球状颗粒粉体(NFA)的Ⅱ级粉煤灰F3;非球状颗粒粉体NF‑1、NF‑2、NF‑3.粉煤灰与非球状颗粒粉体的含水量(质量分数,文中涉及的含量、组成等除特殊说明外均为质量分数)、细度、化学组成、烧失量和粒径均相近.根据GBT 1596—2017《用于水泥和混凝土中的粉煤灰》测得粉煤灰和非球状颗粒粉体的理化性能见
Sample | Moisture content (by mass)/% | Specific surface area/( | Fineness (by mass)/% | Optimal particle size/μm | Chemical composition (by mass)/% | |||||
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | Si+Al+F | SO3 | IL | |||||
F1 | 0.33 | 393 | 5.40 | 8.9 | 46.98 | 30.91 | 6.87 | 84.76 | 2.04 | 1.39 |
F2‑1 | 0.15 | 455 | 20.15 | 11.8 | 33.99 | 28.12 | 13.77 | 75.87 | 1.31 | 3.39 |
F2‑2 | 0.60 | 374 | 14.75 | 7.4 | 31.17 | 19.31 | 16.98 | 67.46 | 3.01 | 0.69 |
F2‑3 | 0.52 | 426 | 17.23 | 8.9 | 43.54 | 27.66 | 9.46 | 80.65 | 1.05 | 1.21 |
F3 | 0.43 | 538 | 15.18 | 33.0 | 44.82 | 29.28 | 11.73 | 85.83 | 0.52 | 3.19 |
NF‑1 | 0.23 | 577 | 32.20 | 25.0 | 46.50 | 16.78 | 12.30 | 75.58 | 0.72 | 5.49 |
NF‑2 | 0.36 | 368 | 17.50 | 20.7 | 39.15 | 15.90 | 18.04 | 73.09 | 0.33 | 0.52 |
NF‑3 | 0.26 | 542 | 16.50 | 20.7 | 70.52 | 15.26 | 2.54 | 88.32 | 0.34 | 1.34 |

图1 粉煤灰和非球状颗粒粉体的粒径分布
Fig.1 Particle size distribution of FA and NFA

图2 粉煤灰和非球状颗粒粉体的SEM照片
Fig.2 SEM images of FA and NFA
用SEM及图像分析软件组合进行图像分析,SEM加速电压为15 kV,模式为Model 4,放大倍数M分别为40、100、200、400倍.图像分析过程中的制样方式、清晰图像获取、灰度图像二值化、数据统计原则均参考文献[
图像分析过程的具体步骤为:先通过SEM获得原图(见

图3 图像分析过程
Fig.3 Process of images analysis
粉体颗粒的形状通常用形状因子来表征,常用的形状因子有纵横比、圆度、球形度、填充度等. Wadel
Sp=sv/Sa | (1) |
R= | (2) |
式中:sv为颗粒等体积球体表面积;Sa为颗粒实际表面积;rc为颗粒角的曲率半径;Ri为测量平面中最大内接圆的半径;N为颗粒角的个数.
Krumbei
Sp= | (3) |
式中:Vp、Vs分别为颗粒及其外接球的体积.
在计算机图像识别技术发展下,蒋丽滢
R= | (4) |
式中:A为颗粒的投影面积;P为颗粒的投影周长.
圆度所表征的颗粒形状逐渐从三维简化到二维,最终由颗粒投影的轮廓形状与圆的接近程度来表示.R值范围为0~1,R值越接近1,表示颗粒越接近圆形.
不同放大倍数下粉煤灰和非球状颗粒粉体的平均粒径Dav和平均圆度Rav见

图4 不同放大倍数下粉煤灰和非球状颗粒粉体的平均粒径和平均圆度
Fig.4 Dav and Rav of FA and NFA under different magnification times
F1和NF‑1的圆度分布见
R | F1, M=40 times | F1, M=400 times | NF‑1, M=400 times | ||||||
---|---|---|---|---|---|---|---|---|---|
Quantity ratio/% | Area ratio/% | Dav/µm | Quantity ratio/% | Area ratio/% | Dav/µm | Quantity ratio/% | Area ratio/% | Dav/µm | |
0-0.5 | 51.1 | 88.7 | 11.757 | 49.1 | 86.5 | 4.859 | 55.4 | 91.9 | 1.575 |
0.5-0.6 | 9.7 | 3.9 | 9.144 | 10.6 | 6.3 | 2.532 | 13.2 | 4.9 | 1.203 |
0.6-0.7 | 30.7 | 3.8 | 4.970 | 31.6 | 2.8 | 1.986 | 27.8 | 2.7 | 0.521 |
0.7-0.8 | 4.1 | 2.1 | 9.254 | 5.3 | 2.1 | 0.622 | 2.4 | 0.5 | 0.961 |
0.8-0.9 | 4.3 | 1.6 | 6.740 | 3.3 | 2.2 | 2.238 | 1.2 | 0.1 | 0.510 |
0.9-1.0 | 0 | 0 | 0 | 0.1 | 0.2 | 2.279 | 0 | 0 | 0 |
Total | 100.0 | 100.0 | 9.099 | 100.0 | 100.0 | 1.747 | 100.0 | 100.0 | 1.206 |
将颗粒总表面积记为S;圆度为R的颗粒表面积记为SR;圆度R大于0.5、0.6、0.7、0.8的颗粒表面积分别记为SR>0.5、SR>0.6、SR>0.7、SR>0.8.统计了粉煤灰和非球状颗粒粉体的颗粒在每个视场内不同圆度等级的面积占比,结果见

图5 粉煤灰和非球状颗粒粉体不同圆度等级下的颗粒面积占比
Fig.5 Area ratio of FA and NFA under different roundness grades
由
综合粉煤灰和非球状颗粒粉体的SR/S、SR/SR>0.5可以发现:粉煤灰与非球状颗粒粉体的SR/S波动较大,且两者之间没有明显的区分,这是由于总表面积S过大,作为分母时将稀释颗粒的圆度特征;粉煤灰和非球状颗粒粉体 的SR/SR>0.5有一定的区分,尤其是SR>0.8/SR>0.5,这是由于可区分的近圆颗粒增多,使得圆度更好的颗粒可以在SR/SR>0.5上稳定体现其形貌品质.Ⅰ级粉煤灰与Ⅱ级粉煤灰在图像分析所得的形貌统计数据上没有明显的区分,且由于Ⅱ级粉煤灰的粒径更大,其不同圆度等级下的SR/S、SR/SR>0.5反而更高.
形貌品质不同的粉煤灰颗粒SR>0.8/SR>0.5表现出明显的区别:4种放大倍数下,粉煤灰F1、F2‑1、F2‑2与F2‑3的SR>0.8/SR>0.5均在7%以上,掺入非球状颗粒粉体的粉煤灰F3的SR>0.8/SR>0.5在5%左右,非球状颗粒粉体NF‑1、NF‑2与NF‑3样的SR>0.8/SR>0.5均低于5%;随着放大倍数的增加,粉煤灰的SR>0.8/SR>0.5均明显增大,非球状颗粒粉体的SR>0.8/SR>0.5均明显减小,粉煤灰与非球状颗粒粉体的SR>0.8/SR>0.5区分愈加明显;当M=200倍时,粉煤灰的SR>0.8/SR>0.5均高于10%,掺入非球状颗粒粉体的粉煤灰SR>0.8/SR>0.5介于2%~10%,非球状颗粒粉体SR>0.8/SR>0.5低于2%;当M=400倍时,非球状颗粒粉体的SR>0.8/SR>0.5已低于1%. 这是由于放大倍数增加,视场内颗粒数减少,使图像分析的识别能力提高. 综上,当M=200倍时,足以区分粉煤灰的形貌品质.
(1)利用图像分析法可将不同圆度等级下的颗粒面积占比作为表征粉煤灰颗粒形貌特征的参数,而SR>0.8/SR>0.5(圆度R>0.8与R>0.5颗粒的表面积比)是最合适的指标.
(2)随着放大倍数M的增加,形貌品质不同的粉煤灰面积占比区分度也增加.当M=200倍时,足以区分粉煤灰的形貌品质差异.
(3)当M≥200倍时,高形貌品质粉煤灰的SR>0.8/SR>0.5大于10%,掺入非球状颗粒粉体的粉煤灰SR>0.8/SR>0.5介于2%~10%,非球状颗粒粉体的SR>0.8/SR>0.5低于2%.
参考文献
SARKAR A, RANO R, MISHRA K K, et al. Particle size distribution profile of some Indian fly ash‑A comparative study to assess their possible uses[J]. Fuel Processing Technology, 2005, 86(11):1221‑1238. [百度学术]
KUTCHKO B G, KIM A G. Fly ash characterization by SEM‑EDS[J]. Fuel, 2006, 85(17/18):2537‑2544. [百度学术]
BENEZET J C, ADAMIEC P, BENHASSAINE A. Relation between silico‑aluminous fly ash and its coal of origin[J]. Particuology, 2008, 6(2):85‑92. [百度学术]
XU G, SHI X M. Characteristics and applications of fly ash as a sustainable construction material:A state‑of‑the‑art review[J]. Resources, Conservation and Recycling, 2018, 136:95‑109. [百度学术]
孙抱真, 贾传玖, 水翠娟. 粉煤灰的颗粒形貌及其物理性质[J]. 硅酸盐学报, 1982, 10(1):64‑69. [百度学术]
SUN Baozhen, JIA Chuanjiu, SHUI Cuijuan. The particle morphology of pulverised fly ash (PFA) and its physical properties[J]. Journal of the Chinese Ceramic Society, 1982, 10(1):64‑69.(in Chinese) [百度学术]
张令茂. 粉煤灰颗粒形态的数值计算方法[J]. 硅酸盐建筑制品. 1988, 4:1‑5. [百度学术]
ZHANG Lingmao. A numeral calculating method of fly ash particles shape[J]. Building Energy Efficiency, 1988, 4:1‑5.(in Chinese) [百度学术]
郭辉, 陈志源, 沈旦申. 粉煤灰颗粒特征的量化[J]. 上海建材学院学报. 1991, 4:413‑422. [百度学术]
GUO Hui, CHEN Zhiyuan, SHEN Danshen. Quantization of the particle characteristics of fly ash[J]. Journal of Shanghai Institure of Building Materials, 1991, 4:413‑422.(in Chinese) [百度学术]
郝文霞, 张雄. 粉煤灰颗粒群特征及其与水泥胶砂性能的关系[J]. 建筑材料学报, 2005, 8(3):244‑249. [百度学术]
HAO Wenxia, ZHANG Xiong. Study on the relationship between characteristics of particle group of fly ash and the properties of cement paste[J]. Journal of Building Materials, 2005, 8(3):244‑249. (in Chinese) [百度学术]
CARTER R M, YAN Y. Measurement of particle shape using digital imaging techniques[J]. Journal of Physics Conference Series, 2005, 15:177‑182. [百度学术]
TUNWAL M, MULCHRONE K F, MEERE P A. Image based particle shape analysis toolbox (IPSAT)[J]. Computers and Geosciences, 2020, 135:104391‑104402. [百度学术]
BLOTT S J, PYE K. Particle shape:A review and new methods of characterization and classification[J]. Sedimentology, 2008, 55(1):31‑63. [百度学术]
Al‑ROUSAN T, MASAD E, TUTUMLUER E, et al. Evaluation of image analysis techniques for quantifying aggregate shape characteristics[J]. Construction and Building Materials, 2007, 21(5):978‑990. [百度学术]
HRYCIW R D, ZHENG J X, SHELTER K. Particle roundness and sphericity from images of assemblies by chart estimates and computer methods[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(9):04016038‑04016053. [百度学术]
NIE Z H, LIANG Z Y, WANG X, et al. Evaluation of granular particle roundness using digital image processing and computational geometry[J]. Construction and Building Materials, 2018, 172:319‑329. [百度学术]
窦竞, 张雄. 用图像分析仪研究矿粉的几何特征[J]. 建筑材料学报, 2002, 5(4):320‑325. [百度学术]
DOU Jing, ZHANG Xiong. Investigation of the geometric characteristic parameters of slag particle by the image analyzer[J]. Journal of Building Materials, 2002, 5(4):320‑325. (in Chinese) [百度学术]
WADELL H. Volume, shape and roundness of rock particles[J]. The Journal of Geology, 1932, 40:443‑451. [百度学术]
KRUMBEIN W C. Measurement and geological significance of shape and roundness of sedimentary particles[J]. Journal of Sedimentary Petrology, 1941, 11:64‑72. [百度学术]
蒋丽滢, 韩继红, 张雄, 等. 颗粒群特征的定量体视学分析方法[J]. 建筑材料学报, 1998, 1(4):325‑329. [百度学术]
JIANG Liying, HAN Jihong, ZHANG Xiong, et al. Quantitative stereology research in characteristics of particle group[J]. Journal of Building Materials, 1998, 1(4):325‑329. (in Chinese) [百度学术]
KIM Y, DODBIBA G. A novel method for simultaneous evaluation of particle geometry by using image processing analysis[J]. Powder Technology, 2021, 393:60‑73. [百度学术]
gypsum leading to the destruction of cement paste under the external sulfate attacking[J]. Journal of Building Materials, 2006, 9(1):19‑23. (in Chinese) [百度学术]
LIU Z Q, ZHANG F Y, DENG D H, et al. Physical sulfate attack on concrete lining‑A field case analysis[J]. Case Studies in Construction Materials, 2017, 6:206‑212. [百度学术]
LI Q, LI X Y, YANG K, et al. The long‑term failure mechanisms of alkali‑activated slag mortar exposed to wet‑dry cycles of sodium sulphate[J]. Cement and Concrete Composites, 2020, 116:103893. [百度学术]
朱效宏, 李青, 康晓娟, 等.干湿循环硫酸盐环境下碱矿渣水泥C(N)‑A‑S‑H凝胶结构演化规律[J]. 硅酸盐学报, 2021, 49(11):2529‑2537. [百度学术]
ZHU Xiaohong, LI Qing, KANG Xiaojuan, et al. Nano‑structural change of C(N)‑A‑S‑H gel in alkali‑activated slag pastes subjected to wetting‑drying cyclic sulphate attack[J]. Journal of the Chinese Ceramic Society, 2021, 49(11):2529‑2537. (in Chinese) [百度学术]
LODEIRO G, MACPHEE D E, PALOMO A, et al. Effect of alkalis on fresh C‑S‑H gels. FTIR analysis[J]. Cement and Concrete Research, 2009, 39(3):147‑153. [百度学术]