摘要
将Mg(OH)2作为煅烧MgO的前驱体,同时以在MgO中掺入H3BO3的方式引入杂质硼,采用水化热、X射线衍射仪(XRD)、扫描电镜(SEM)和压汞仪(MIP)等测试技术,研究矿物掺合料对含H3BO3的碱式硫酸镁水泥(BMSC)凝结硬化过程的影响机理.结果表明:未掺加矿物掺合料时,含H3BO3的BMSC水化放热速率较控制组慢、凝结硬化时间延长,且对BMSC的早期强度影响较大;掺加矿物掺合料后,含H3BO3的BMSC后期强度提高,其中外掺H3BO3的BMSC 强度提高更加显著,且进一步延缓了水化放热速率;掺加矿物掺合料后,含H3BO3的BMSC水化结晶相未发生改变,仍为5·1·7相和Mg(OH)2,孔隙率较低,原因是矿物掺合料发挥了微集料效应,填充了BMSC内部孔隙,使得内部结构更加致密.
碱式硫酸镁水泥(BMSC)是继磷酸镁水泥(MPC)、氯氧镁水泥(MOC)之后发展起来的一种新型镁质胶凝材
鉴于此,本文将粉煤灰和硅灰添加到含H3BO3的BMSC中,来研究BMSC的水化规律,并分析其水化机理,以期为开发基于盐湖镁资源的BMSC提供理论基础和技术支撑.
氢氧化镁(Mg(OH)2),分析纯,购自阿拉丁化学试剂有限公司;七水硫酸镁(MgSO4·7H2O),购自天津致远化学试剂有限公司;外加剂(CA),分析纯柠檬酸钠(Na3C6H5O7·2H2O),购自天津致远化学试剂有限公司;硼酸(B,H3BO3),分析纯,购自国药集团化学试剂有限公司;矿物掺合料为粉煤灰(FA)和硅灰(SF),其中粉煤灰购自中国辽宁发电厂,硅灰购自青海海东加密硅灰厂,两者的化学组成(质量分数,文中的组成、含量等除特别注明外均为质量分数)见表
SiO2 | SO3 | CaO | Na2O | Fe2O3 | K2O | MgO | Al2O3 | IL |
---|---|---|---|---|---|---|---|---|
37.23 | 2.03 | 13.10 | 0.42 | 3.88 | 0.69 | 2.79 | 32.87 | 6.99 |
SiO2 | MgO | H2O | Fe2O3 | C | CaO | Al2O3 | Na2O |
---|---|---|---|---|---|---|---|
89.42 | 0.89 | 0.67 | 0.49 | 5.10 | 0.60 | 0.30 | 0.40 |
在800 ℃下煅烧未含和含5% H3BO3的Mg(OH)2,以获得不同活性MgO(分别标记为T8A和T8B).

图1 2种活性MgO的XRD图谱
Fig.1 XRD patterns of two kinds of active MgO
Sample | Crystallite dimension/nm | BET specific surface area /( | Average particle size/μm |
---|---|---|---|
T8A T8B |
22.1 17.1 |
38.17 77.34 |
3.45 3.32 |
本试验设置m(MgO)∶m(MgSO4·7H2O)∶m(H2O)=8∶1∶20,Na3C6H5O7·2H2O掺量为0.5%(以MgO质量计).
Specimen No. | MgO | MgSO4·7H2O solution | CA | B | FA | SF |
---|---|---|---|---|---|---|
T8A0 | 1 000 | 1 439 | 5 | 0 | 0 | 0 |
T8IA5 | 1 000 | 1 385 | 5 | 0 | 0 | 0 |
T8OA5 | 1 000 | 1 439 | 5 | 50 | 0 | 0 |
T8A0‑20%FA | 1 000 | 1 439 | 5 | 0 | 200 | 0 |
T8IA5‑20%FA | 1 000 | 1 385 | 5 | 0 | 200 | 0 |
T8OA5‑20%FA | 1 000 | 1 439 | 5 | 50 | 200 | 0 |
T8A0‑10%SF | 1 000 | 1 439 | 5 | 0 | 0 | 100 |
T8IA5‑10%SF | 1 000 | 1 385 | 5 | 0 | 0 | 100 |
T8OA5‑10%SF | 1 000 | 1 439 | 5 | 50 | 0 | 100 |

图2 矿物掺合料对BMSC试件抗压强度的影响
Fig.2 Influence of mineral admixtures on compressive strength of BMSC specimens
由
由

图3 矿物掺合料对BMSC试件水化放热速率的影响
Fig.3 Influence of mineral admixtures on hydration heat release rate of BMSC specimens
由
由

图4 BMSC试件养护28 d时的XRD图谱
Fig.4 XRD patterns of BMSC specimens curing for 28 d
由
由

图5 BMSC试件养护28 d时的SEM照片
Fig.5 SEM images of BMSC specimens curing for 28 d

图6 BMSC试件养护28 d时的累积孔隙率
Fig.6 Cumulative porosity of BMSC specimens curing for 28 d
Specimen No. | Porosity(by volume)/% | Average pore size/nm | Proportion of different pore sizes/% | ||
---|---|---|---|---|---|
≤20 nm | 20-100 nm | >100 nm | |||
T8A0 | 51.38 | 141.00 | 12.33 | 25.16 | 62.51 |
T8IA5 | 39.28 | 98.89 | 30.26 | 53.21 | 16.53 |
T8OA5 | 28.30 | 89.46 | 29.58 | 47.00 | 23.42 |
T81A0‑20%FA | 39.00 | 133.54 | 18.60 | 5.39 | 76.01 |
T8IA5‑20%FA | 38.45 | 98.29 | 12.71 | 51.72 | 35.57 |
T8OA5‑20%FA | 26.77 | 44.16 | 33.58 | 39.31 | 27.11 |
T8A0‑10%SF | 39.35 | 101.97 | 8.79 | 35.21 | 56.00 |
T8IA5‑10%SF | 35.13 | 97.99 | 3.26 | 57.32 | 39.42 |
T8OA5‑10%SF | 22.49 | 30.20 | 39.78 | 45.37 | 14.85 |
(1)MgO前驱体共烧H3BO3后,尽管制备得的MgO具有较大比表面积,但MgO表面附着大量粗糙的Mg3B2O6,导致共烧H3BO3对BMSC试件水化放热速率的延缓作用较外掺H3BO3对BMSC试件水化放热速率的影响显著.
(2)未掺矿物掺合料时,H3BO3的存在形式影响BMSC的抗压强度,含共烧5% H3BO3的BMSC试件(T8IA5)养护28 d时抗压强度最高.
(3)掺加矿物掺合料后,BMSC试件的后期抗压强度得到明显改善.H3BO3的存在形式不同,矿物掺合料对BMSC试件后期强度的改善程度也有所不同,其中外掺H3BO3的BMSC试件抗压强度改善效果较明显.原因是外掺H3BO3后矿物掺合料更加有利于形成M‑S‑H凝胶,且矿物掺合料的加入进一步延缓了BMSC试件的水化放热速率,但其主要水化结晶相并未发生明显变化.
(4)掺加矿物掺合料后,BMSC试件的孔隙率及平均孔径均有所减小,原因是矿物掺合料发挥了微集料效应,填充了BMSC试件的内部孔隙,使得内部结构更加致密.
参考文献
吴成友.碱式硫酸镁水泥的基本理论及其在土木工程中的应用技术研究[D].西宁:中国科学院青海盐湖研究所,2014. [百度学术]
WU Chengyou. The basic theory of basic magnesium sulfate cement and its application technology in civil engineering [D]. Xining:Qinghai Salt Lake Institute of Chinese Academy of Sciences , 2014. (in Chinese) [百度学术]
吴成友, 邢赛南, 张吾渝, 等.BMSC水化规律研究[J]. 功能材料,2016,47(11):11120‑11124,11130. [百度学术]
WU Chengyou, XING Sainan, ZHANG Wuyu, et al. Research on the hydration law of BMSC [J]. Functional Materials, 2016, 47(11):11120‑11124,11130. (in Chinese) [百度学术]
ZENG X C, YU H F. Review of studies on structural performance of basic magnesium sulfate cement concrete in China (2014—2019) [J]. KSCE Journal of Civil Engineering,2020,24(2):1524‑1530. [百度学术]
GUO T, WANG H F, YANG H J, et al. The mechanical properties of magnesium oxysulfate cement enhanced with 517 phase magnesium oxysulfate whiskers[J]. Construction and Building Materials, 2017, 150 :844‑850. [百度学术]
ZHOU X M, LI Z J. Light‑weight wood‑magnesium oxychloride cement composite building products made by extrusion[J]. Construction and Building Materials,2012,27 (1):382‑389. [百度学术]
乌志明, 李法强. 青海盐湖氯化镁资源开发[J].盐湖研究, 2001, 9 (2):61‑65. [百度学术]
WU Zhiming, LI Faqiang. Development of magnesium chloride resources in salt lakes of Qinghai[J]. Salt Lake Research, 2001, 9 (2):61‑65. (in Chinese) [百度学术]
XU B Q, DENG H, DAI Y N, et al. Preparation of nanopartical of magnesium hydroide from bittern[J]. Transaction of Nonferrous Metals Society of China, 2007, 17(A02):671‑675. [百度学术]
胡庆福, 宋丽英, 胡晓湘. 卤水-碳酸铵法制取活性氧化镁工艺研究[J]. 盐业与化工,2007, 36(6):17‑20,37. [百度学术]
HU Qingfu, SONG Liying, HU Xiaoxiang. Study on the preparation of activated magnesium oxide by brine‑ammonium carbonate process[J]. Salt Industry and Chemical Industry, 2007, 36(6):17‑20, 37. (in Chinese) [百度学术]
王倩,武志红,胡亚茹,等.MgO活性对MgO‑SiO2‑H2O胶凝体系的影响[J].建筑材料学报,2020,23(4):771‑777. [百度学术]
WANG Qian, WU Zhihong, HU Yaru, et al. Influence of MgO activity on MgO‑SiO2‑H2O gelling system[J].Journal of Building Materials, 2020,23(4):771‑777. (in Chinese) [百度学术]