摘要
将微胶囊相变材料(MPCM)加入水泥砂浆中制成建筑储能砂浆,研究了储能砂浆的微观形貌、相变特性、热稳定性、导热系数、储热性能和力学性能.结果表明:储能砂浆的导热系数随MPCM含量的增加而降低;储能砂浆的MPCM芯材为固态时的导热系数大于其为液态时的导热系数;当MPCM含量为20%时,储能砂浆的内表面峰值温度较水泥砂浆降低3.1 ℃,达到峰值温度的时间比水泥砂浆延迟20.5 min,其28 d龄期硬化浆体的抗压强度为9.3 MPa;储能砂浆具有足够的抗压强度和良好的储能调温能力,可用于建筑围护结构.
建筑围护结构中添加相变材料不仅能减小室外温度波动对室内热环境的影响,还能提高围护结构的保温隔热性
正十八烷/密胺树脂MPCM来自上海儒熵新能源科技有限公司,为白色粉末,其芯壳比为9∶1,密度为0.9 g/c
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O | SO3 |
---|---|---|---|---|---|---|
19.91 | 4.35 | 3.50 | 64.10 | 2.25 | 0.15 | 2.93 |
根据GB/T 17671—1999《水泥胶砂强度检验方法(ISO法)》制备储能砂浆,其配合比见
Sample | Cement | Standard sand | Water | MPCM |
---|---|---|---|---|
C‑M | 450 | 1 350 | 225 | 0 |
MPCM5 | 450 | 1 350 | 225 | 22.5 |
MPCM10 | 450 | 1 350 | 225 | 45.0 |
MPCM15 | 450 | 1 350 | 225 | 67.5 |
MPCM20 | 450 | 1 350 | 225 | 90.0 |
取规格为40 mm×40 mm×20 mm、70.7 mm×70.7 mm×70.7 mm和300 mm×300 mm×20 mm的铸铁水泥模具,对模具内壁及表面进行清理并涂油,将搅拌均匀的材料分别装入铸铁水泥模具内,反复振实填平,静置24 h后脱模,置于20 ℃,湿度为90%的养护室内养护28 d.40 mm×40 mm×20 mm的试件用于导热系数测试;70.7 mm×70.7 mm×70.7 mm的试件用于抗压强度测试;300 mm×300 mm×20 mm的试件用于储热/放热性能测试.
用S‑3400N型扫描电子显微镜(SEM)观察MPCM和储能砂浆的微观形貌;用3500 Sirius型差示扫描量热(DSC)仪在氮气气氛测试环境下以10 K/min的升/降温速率在-10~60 ℃温度范围内测试MPCM和储能砂浆的相变温度和相变潜热;用209 F3型热重(TG)分析仪以10 K/min的升/降温速率在25~500 ℃温度范围内测试MPCM和储能砂浆的热稳定性;用DRE‑Ⅲ型导热系数测试仪测试储能砂浆的导热系数;用DYH‑300B型水泥压力试验机测试储能砂浆的抗压强度,加载速率为(50±10) N/s.

图1 储热/放热性能测试试验箱示意图
Fig.1 Schematic diagram of thermal energy storage/ release property test chamber (size: mm)

图2 MPCM和储能砂浆的SEM图片
Fig.2 SEM images of MPCM and energy storage mortar

图3 储能砂浆的DSC曲线
Fig.3 DSC curves of energy storage mortars

图4 MPCM、水泥砂浆和储能砂浆的热重曲线
Fig.4 TG curves of MPCM, cement mortar and energy storage mortar

图5 不同温度下MPCM含量对储能砂浆导热系数的影响
Fig.5 Effect of MPCM content on thermal conductivities of energy storage mortars at various temperatures

图6 水泥砂浆和储能砂浆内表面温度随时间的变化
Fig.6 Variations of temperatures of inner surface of cement mortar and energy storage mortars with time

图7 升温过程中水泥砂浆和储能砂浆内表面的红外热像图
Fig.7 Infrared thermography images of inner surface of cement mortar and energy storage mortars during heating process

图8 不同温度下MPCM含量对储能砂浆抗压强度的影响
Fig.8 Effect of MPCM content on the compressive strengths of energy storage mortars at various temperatures
28 d龄期时,MPCM15和MPCM20储能砂浆的抗压强度分别为11.2 MPa和9.3 MPa,根据GB50574—2010《墙体材料应用统一技术规范》和JC/T 2338—2015《建筑储能调温砂浆》的规定,MPCM15用作采暖地区外墙抹灰砂浆,MPCM20用作内墙抹灰砂浆和非采暖地区外墙抹灰砂浆,完全满足建筑应用的强度性能要求.
(1)储能砂浆的导热系数随着MPCM含量的增加而降低.储能砂浆芯材为固态时的导热系数大于其为液态时的导热系数.
(2)储能砂浆的储热性能随着MPCM含量的增加而增加.MPCM5、MPCM10、MPCM15和MPCM20储能砂浆内表面峰值温度较水泥砂浆依次降低1.3、1.6、2.3、3.1 ℃,达到峰值温度的时间比水泥砂浆分别延迟17.5、19.5、20.0、20.5 min.
(3)储能砂浆的抗压强度随MPCM含量的增加而降低.MPCM15和MPCM20储能砂浆的抗压强度分别为11.2 MPa和9.3 MPa,MPCM15用作采暖地区外墙抹灰砂浆,MPCM20用作内墙抹灰砂浆和非采暖地区外墙抹灰砂浆,完全满足建筑应用的强度性能要求.
参考文献
杨柳, 乔宇豪, 刘衍, 等. 建筑相变蓄热及夜间通风技术研究进展[J]. 科学通报, 2018, 63(7):629‑640. [百度学术]
YANG Liu, QIAO Yuhao, LIU Yan, et al. Review of phase change heat storage and night ventilation technology of buildings[J]. Chinese Science Bulletin, 2018, 63(7):629‑640. (in Chinese) [百度学术]
HUANG X, ZHU C Q, LIN Y X, et al. Thermal properties and applications of microencapsulated PCM for thermal energy storage:A review[J]. Applied Thermal Engineering, 2019, 147:841‑855. [百度学术]
RATHORE P K S, SHUKLA S K, GUPTA N K. Potential of microencapsulated PCM for energy savings in buildings:A critical review[J]. Sustainable Cities and Society, 2020, 53:101884. [百度学术]
HENIEGAL A M, IBRAHIM O M O, FRAHAT N B, et al. New techniques for the energy saving of sustainable buildings by using phase change materials[J]. Journal of Building Engineering, 2021, 41:102418. [百度学术]
FRANQUET E, GIBOUT S, TITTELEIN P, et al. Experimental and theoretical analysis of a cement mortar containing microencapsulated PCM[J]. Applied Thermal Engineering, 2014, 73(1):32‑40. [百度学术]
陆江, 瞿铭良, 田帅奇. 相变微胶囊/加气混凝土复合材料的热工性能[J]. 建筑材料学报, 2020, 23(2):341‑346,363. [百度学术]
LU Jiang, QU Mingliang, TIAN Shuaiqi. Thermal performances of micro‑encapsulated phase change materials/aerated concrete composite materials[J]. Journal of Building Materials, 2020, 23(2):341‑346,363. (in Chinese) [百度学术]
PILEHVAR S, CAO V D, SZCZOTOK A M, et al. Physical and mechanical properties of fly ash and slag geopolymer concrete containing different types of micro‑encapsulated phase change materials[J]. Construction and Building Materials, 2018, 173:28‑39. [百度学术]
SRINIVASARAONAIK B, SINGH L P, SINHA S, et al. Studies on the mechanical properties and thermal behavior of microencapsulated eutectic mixture in gypsum composite board for thermal regulation in the buildings[J]. Journal of Building Engineering, 2020, 31:101400. [百度学术]
KHERADMAND M, AZENHA M, DE AGUIAR J L B, et al. Experimental and numerical studies of hybrid PCM embedded in plastering mortar for enhanced thermal behaviour of buildings[J]. Energy, 2016, 94:250‑261. [百度学术]
FRAZZICA A, BRANCATO V, PALOMBA V, et al. Thermal performance of hybrid cement mortar‑PCMs for warm climates application[J]. Solar Energy Materials and Solar Cells, 2019, 193:270‑280. [百度学术]
WI S, YANG S, YUN B Y, et al. Exterior insulation finishing system using cementitious plaster/microencapsulated phase change material for improving the building thermal storage performance[J]. Construction and Building Materials, 2021, 299:123932. [百度学术]
KANT K, SHUKLA A, SHARMA A. Advancement in phase change materials for thermal energy storage applications[J]. Solar Energy Materials and Solar Cells, 2017, 172:82‑92. [百度学术]
CELLAT K, BEYHAN B, KONUKLU Y, et al. 2 years of monitoring results from passive solar energy storage in test cabins with phase change materials[J]. Solar Energy, 2020, 200:29‑36. [百度学术]
桑国臣, 樊敏, 崔晓玲, 等. 压力成型相变储能砂浆的热性能与力学性能[J]. 建筑材料学报, 2019, 22(5):693‑699. [百度学术]
SANG Guochen, FAN Min, CUI Xiaoling, et al. Thermal and mechanical properties of phase‑change thermal energy storage mortar based on compression forming method[J]. Journal of Building Materials, 2019, 22(5):693‑699. (in Chinese) [百度学术]
LEI J W, KUMARASAMY K, ZINGRE K T, et al. Cool colored coating and phase change materials as complementary cooling strategies for building cooling load reduction in tropics[J]. Applied Energy, 2017, 190:57‑63. [百度学术]
鲁进利, 李洋, 韩亚芳, 等. 含相变材料的定型复合建材储能调温及力学特性[J]. 化工进展, 2019, 38(8):3801‑3808. [百度学术]
LU Jinli, LI Yang, HAN Yafang, et al. Energy storage and mechanical properties of shaped composite building materials containing phase change materials[J]. Chemical Industry and Engineering Progress, 2019, 38(8):3801‑3808. [百度学术]
SHI J Y, TAN J X, LIU B J, et al. Thermal and mechanical properties of thermal energy storage lightweight aggregate mortar incorporated with phase change material[J]. Journal of Energy Storage, 2020, 32:101719. [百度学术]
DRISSI S, LING T C, MO K H, et al. A review of microencapsulated and composite phase change materials:Alteration of strength and thermal properties of cement‑based materials[J]. Renewable and Sustainable Energy Reviews, 2019, 110:467‑484. [百度学术]
LI C E, YU H, SONG Y, et al. Experimental thermal performance of wallboard with hybrid microencapsulated phase change materials for building application[J]. Journal of Building Engineering, 2020, 28:101051. [百度学术]
ABDELLATEF Y, KAVGIC M. Thermal, microstructural and numerical analysis of hemperete‑microencapsulated phase change material composites[J]. Applied Thermal Engineering, 2020, 178:115520. [百度学术]