摘要
为促进MgO基单组分碱激发矿渣胶凝材料(AASM)的发展和应用,采用MgO和硅酸钠作为激发剂,通过单独及复合激发的方式,研究了MgO和硅酸钠组合形式对单组分AASM水化微结构和力学特性的影响,并采用纳米压痕分析了其微观力学性能.结果表明:加入MgO后,会形成Mg(OH)2,可提供碱性环境,促使矿渣溶解;硅酸钠溶解后,会进一步提升溶液pH值,加速矿渣Al—O、Si—O键断裂以及C
近年来,采用MgO为主体激发剂制备碱-激发矿渣胶凝材料(AASM)成为AASM的一个重要研究方
然而,AASM的水化历程依赖于MgO的一次水化,且其所形成的Mg(OH)2碱性弱于NaOH,造成AASM孔隙溶液的pH值较低,矿渣水化程度有限,力学强度发展缓慢.Fei
矿渣采用S105级高炉矿渣,其表观密度为2 800 kg/
CaO | SiO2 | Al2O3 | MgO | Fe2O3 | TiO2 | K2O |
---|---|---|---|---|---|---|
43.7 | 26.5 | 18.2 | 4.9 | 1.0 | 1.0 | 0.8 |

图1 矿渣的粒径分布
Fig.1 Particle size distribution of slag
为分析MgO/硅酸钠复合激发剂对碱激发矿渣胶凝材料水化和力学性能的影响,使用碱当量为10%的复合激发剂制备水胶比为0.5(水胶比中的水包括硅酸钠中的结合水)的AASM,作为MN组.同时,使用碱当量为7%的MgO和碱当量为3%的硅酸钠单独激发矿渣,得到相同水胶比的AASM,作为MG组和NA组,具体配合比见
Group | MgO | Na2SiO3·5H2O | Slag | Water |
---|---|---|---|---|
MG | 2.57 | 0 | 36.70 | 18.30 |
NA | 0 | 3.76 | 36.70 | 16.70 |
MN | 2.57 | 3.76 | 36.70 | 16.70 |
抗压强度测试采用50 mm×50 mm×50 mm立方体试块,具体方法为:将新拌浆体装入模具中,经振动密实后,在(20±3) ℃,相对湿度RH>95%条件下带模标准养护24 h;然后将试块拆模取出,继续标准养护,使用TYE300型压力机测试AASM的3、7、28 d抗压强度,4个试块为一组,测试结果取平均值,报告标准差.
采用TAM‑AIR水化量热仪测试AASM的水化放热.测试前,将材料及量热仪在20 ℃环境中恒温放置24 h,采用内搅拌法测试AASM的72 h水化热.
采用日本理学SmartLab高分辨X射线衍射仪(XRD)对水化产物进行分析,扫描范围为5°~60°,扫描速率为5(°)/min.在制备XRD样品时,将相应龄期净浆样品浸泡在无水乙醇中7 d以上,以终止矿渣水化;测试前,将样品真空干燥,并用玛瑙研磨过0.074 mm(200目)筛.
使用FlexSEM1000扫描电子显微镜(SEM)分析AASM微观结构.样品取自对应龄期抗压测试代表性试块,浸泡在无水乙醇中7 d以上以终止水化;测试前进行真空干燥,对样品进行喷金处理以获得良好导电性,测试时的加速电压和光束电流分别为15 kV、1 mA.
使用MesoMR23‑060V‑1纽曼核磁共振仪分析28 d试样的孔结构,磁场为(0.50±0.05) T,频率为21.3 Hz.试样准备方法为:按
采用Histron TI950纳米压痕仪分析AASM微观力学性质.样品取自28 d抗压强度试块,浸泡在无水乙醇中7 d以上以终止矿渣水化,测试前进行真空干燥,并采用低密度环氧树脂浸制后制得试样.使用金相抛光机,依次经240、400、600、800、1 200、1 500号砂纸进行打磨,每种细度至少打磨15 min.然后依次用6.00、3.00、1.00、0.05、0.25、0.05 μm金刚石悬浮液对样品表面进行抛光约30 min,制得纳米压痕试样.测试时,压痕矩阵范围为100 μm×100 μm,间距为10 μm.对于每个压痕点,荷载通过多次部分卸载(10次)增加到1 mN,最终保持2 s,并在5 s内线性下降到零.假设胶凝材料泊松比为0.2,根据每个压痕点50%~95%最大载荷之间的卸载段来计算刚度,采用Oliver和Pharr
(1) |
式中:A为压痕点的接触面积;S为初始卸载刚度.
约化模量Er与弹性模量E之间有以下关系:
(2) |
式中:ν为材料的泊松比;Ei、νi分别为压头的弹性模量和泊松比.对于Berkovich金刚石压头,Ei=1 140 GPa, ν i=0.07.

图2 AASM水化热曲线
Fig.2 Hydration kinetics curves of AASM
由

图3 MgO、硅酸钠单独及复合激发矿渣试样的XRD图谱
Fig.3 XRD patterns for samples activated by MgO and sodium silicate and composite activator

图4 28 d试样孔结构
Fig.4 Pore size distribution of 28 d pastes
采用纳米压痕试验对水化产物弹性模量进行表征,

图5 各组压痕点阵分布图
Fig.5 Grid nanoindentation of each groups

图6 各组弹性模量分布云图
Fig.6 Contour mapping of elastic modulus obtained from grid nanoindentation
参照文献[
为了对各组水化产物弹性模量进行精确的分析,对弹性模量云图进行反褶积,得到各组4种水化产物相的弹性模量及其组成,结果见7.由

图7 各组4种水化产物相的弹性模量及其组成
Fig.7 Elastic modulus and composition of four samples of hydrates for each group
仅比较各物相弹性模量对于其宏观力学性能的影响较为片面,因而
试样不同龄期下的抗压强度见

图8 试样不同龄期下的抗压强度
Fig.8 Compressive strength of samples at different ages

图9 各组试样28 d的SEM图
Fig.9 SEM images of samples at 28 d
MgO/硅酸钠复合激发剂对碱激发矿渣胶凝材料(AASM)水化过程的影响涉及2个方面:一方面,MgO水化形成Mg(OH)2,而Mg(OH)2会形成碱性环境,促使矿渣Al—O、Si—O键断裂以及C
参考文献
DUNG N T, UNLUER C. Carbonated MgO concrete with improved performance: The influence of temperature and hydration agent on hydration, carbonation and strength gain[J]. Cement and Concrete composites, 2017, 82:152‑164. [百度学术]
FEI J, KAI G, AL‑TABBAA A. Strength and hydration properties of reactive MgO‑activated ground granulated blast furnace slag paste[J]. Cement and Concrete Composites, 2015, 57:8‑16. [百度学术]
SHEN W G, WANG Y H, ZHANG T, et al. Magnesia modification of alkali‑activated slag fly ash cement[J]. Journal of Wuhan University of Technology(Materials Sciense), 2011, 26(1):121‑125. [百度学术]
FEI J, KAI G, ABDOLLAHZADEH A, et al. Effects of different reactive MgOs on the hydration of MgO‑activated GGBS paste[J]. Journal of Materials in Civil Engineering, 2015, 27(7):B4014001. [百度学术]
DUNG N T, HOOPER T J N, UNLUER C. Enhancing the performance of MgO‑activated slag‑fly ash mixes by accelerated carbonation[J]. Journal of CO2 Utilization, 2020, 42:101356. [百度学术]
JUN Y B, HAN S H, SHIN T Y, et al. Effects of CO2 curing on alkali‑activated slag paste cured in different curing conditions[J]. Materials(Basel), 2019, 12(21):3513. [百度学术]
张长森,李杨,胡志超,等. 钠盐激发钢渣水泥的早期水化特性及动力学[J]. 建筑材料学报,2021,24(4):710‑715. [百度学术]
ZHANG Changsen, LI Yang, HU Zhichao, et al. Early hydration properties and kinetics of steel slag‑cement activated by sodium salts[J]. Journal of Building Materials, 2021, 24(4):710‑715. (in Chinese) [百度学术]
ZHOU L F, GOU M F, GUAN X M. Hydration kinetics of cement‑calcined activated bauxite tailings composite binder[J]. Construction and Building Materials, 2021, 301:124296. [百度学术]
MA S, SNELLINGS R, LI X, et al. Alite‑ye'elimite clinker:Hydration kinetics, products and microstructure[J]. Construction and Building Materials, 2021, 266:121062. [百度学术]
BEN HAHA M, LOTHENBACH B, LE SAOUT G, et al. Influence of slag chemistry on the hydration of alkali‑activated blast‑furnace slag ‑ Part I:Effect of MgO[J]. Cement and Concrete Research, 2011, 41(9):955‑963. [百度学术]
ZHENG J R, SUN X X, GUO L J, et al. Strength and hydration products of cemented paste backfill from sulphide‑rich tailings using reactive MgO‑activated slag as a binder[J]. Construction and Building Materials, 2019, 203:111‑119. [百度学术]
NEMATOLLAHI B, SANJAYAN J, SHAIKH F U A. Synthesis of heat and ambient cured one‑part geopolymer mixes with different grades of sodium silicate[J]. Ceramics International, 2015, 41(4):5696‑5704. [百度学术]
NĚMEČEK J, ŠMILAUER V, KOPECKÝ L. Nanoindentation characteristics of alkali‑activated aluminosilicate materials[J]. Cement and Concrete Composites, 2011, 33(2):163‑170. [百度学术]
刘方华. 碱激发磷矿渣复合胶凝材料的水化特性[J]. 建筑材料学报,2020,23(5):1038‑1045. [百度学术]
LIU Fanghua. Hydration characteristics of alkali‑activated phosphorus slag composite cementitious materials[J]. Journal of Building Materials, 2020, 23(5):1038‑1045. (in Chinese) [百度学术]
万小梅,韩笑,于琦,等. 碱激发矿渣净浆对氯离子的固化作用[J]. 建筑材料学报,2021,24(5):952‑960. [百度学术]
WAN Xiaomei, HAN Xiao, YU Qi, et al. Solidification of chloride ions in alkali‑activated slag paste[J]. Journal of Building Materials, 2021, 24(5):952‑960. (in Chinese) [百度学术]
TENNIS P D, JENNINGS H M. A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes[J]. Cement and Concrete Research, 2000, 30(6):855‑863. [百度学术]
吴中伟,廉慧珍. 高性能混凝土[M].北京:中国铁道出版社,1999:22‑25. [百度学术]
WU Zhongwei, LIAN Huizhen. High performance concrete[M]. Beijing:China Railway Publishing House, 1999:22‑25. (in Chinese) [百度学术]
JIANG D B, LI X G, LÜ Y, et al. Autogenous shrinkage and hydration property of alkali activated slag pastes containing superabsorbent polymer[J]. Cement and Concrete Research, 2021, 149:106581. [百度学术]
HE J, BAI W B, ZHENG W H, et al. Influence of hydrated lime on mechanical and shrinkage properties of alkali‑activated slag cement[J]. Construction and Building Materials, 2021, 289:123201. [百度学术]
CHEN W W, LI B, WANG J, et al. Effects of alkali dosage and silicate modulus on autogenous shrinkage of alkali‑activated slag cement paste[J]. Cement and Concrete Research, 2021, 141:106322. [百度学术]