摘要
为了研究高温后钢筋锈坑的应力分布,通过机械加工来模拟锈蚀钢筋并研究了钢筋在高温后力学性能的变化,最后采用有限元软件计算了模拟锈坑的应力分布.结果表明:对于带有单个模拟锈坑的试件,相同条件下双曲线形锈坑的应力集中系数大于椭圆形锈坑;当模拟锈坑的宽度相同时,其应力集中系数随着深宽比的增大而增大;当经历800 ℃的高温作用后,模拟锈坑的应力集中系数较常温时下降了10%左右;对于带有2个模拟锈坑的试件,锈坑夹角在30°~90°时的应力集中系数明显增加.
钢筋锈蚀是导致混凝土结构破坏的最主要因素,对建筑结构的适用性及安全性有重要的影
火灾作为一种发生频率较高的灾害,通常会造成严重的财产损失,所以对建筑结构抗火性能的研究一直是国内外学者研究的重要课
原材料为HRB400级热轧螺纹钢筋,尺寸为9×110 mm,常温下屈服强度为425 MPa,极限强度为620 MPa,伸长率为22.4%.钢筋的化学组成如

图1 试件形状示意图
Fig.1 Schematic diagram of specimen(size: mm)

图2 模拟锈坑的形状和尺寸
Fig.2 Shapes and sizes of artificial corrosion pits
力学性能试验采用Zwick Z250TEW型250 kN万能材料试验机,最大载荷为100 kN,棒材试件的夹持范围为0~15 mm.
热处理设备是普通的马弗炉,加热温度范围为100~1 000 ℃,控温精度为±1 ℃.
有限元分析选用的软件是ANSYS Workbench,三维模型在Creo 6.0软件中建立,为了探究模拟锈坑对钢筋力学性能的影响,建立了单个锈坑和2个锈坑2种模型,模拟锈坑仿真模型的参数如表

图3 相邻模拟锈坑模型和剖视图
Fig.3 Model and sectional view of adjacent artificial corrosion pit
有限元分析的前提是提供准确的钢筋本构模型.在拉伸过程中,试件任一瞬时的面积A与标距L是在变化的,而通过试验得到的名义应力和名义应变是按照初始面积A和标距L计算的,因此任一瞬时的真实应力和真实应变ε与相应的名义应力和名义应变存在差异,在塑性阶段这种差异会逐渐增大.在均匀变形阶段,真实应力定义为,根据塑性变形体积V不变的假设,真实应力和真实应变的转换关系如式(
(1) |
(2) |
根据上述的转换关系和试验得到的应力-应变关系,可以得到在各个温度作用后未锈蚀钢筋的真实应力-应变关系(见

图4 真实应力-应变曲线
Fig.4 True stress‑strain curves
利用本文的试验结果验证数值模拟的准确性.将不同温度下数值仿真的结果与试验值进行比较,结果如

图5 不同温度下载荷-位移曲线试验值与计算值的比较
Fig.5 Comparison between experimental values and simulated values of load‑displacement curves at different temperatures
应力集中系数(α)受材料类型、缺口几何形状和温度等因素的影响,其求解公式如
(3) |

图8 单个模拟锈坑的应力集中系数
Fig.8 Stress concentration factor of single artificial corrosion pit
为了探究相同深宽比下,模拟锈坑的开口宽度bp对应力集中系数的影响,在相同深宽比下建立了开口宽度为0.5、1.0、2.0 mm的椭圆形模拟锈坑模型,具体参数如

图9 深宽比对应力集中系数的影响
Fig.9 Effect of opening width on stress concentration factor

图10 相邻模拟锈坑的应力集中系数
Fig.10 Stress concentration factor of adjacent artificial corrosion pits
(1)单个模拟锈坑底部的应力最大,在沿载荷施加方向锈坑边缘处最小,越靠近锈坑底部,应力越大.双曲线形锈坑的应力集中系数要明显大于相同尺寸下的椭圆形锈坑.
(2)温度、锈坑宽度和深宽比对单个模拟锈坑的应力集中系数都有影响.当经历的温度小于700 ℃时,锈坑的应力集中系数基本保持不变,在经历800 ℃的高温作用后,锈坑的应力集中系数约下降10%.当锈坑宽度相同时,应力集中系数随着深宽比的增加而增加.当深宽比不同时,温度对小深宽比锈坑的应力集中系数影响较大.
(3)对于带有2个模拟锈坑的试样,当锈坑夹角在30°~60°时,应力集中系数明显增加.随着夹角的增大,应力集中系数迅速减小.整体上随着温度的增加,应力集中系数逐渐减小,但在700 ℃时由于材料性能变化明显,导致应力集中系数最大.
参考文献
DU F Y, JIN Z Q, SHE W, et al. Chloride ions migration and induced reinforcement corrosion in concrete with cracks: A comparative study of current acceleration and natural marine exposure[J]. Construction and Building Materials, 2020, 263:120099. [百度学术]
欧阳祥森, 张艳芳, 邹洪波. 基于数值模拟的锈蚀钢筋力学性能退化分析[J]. 湖南工程学院学报(自然科学版), 2018,28(2):65‑69. [百度学术]
OUYANG Xiangshen, ZHANG Yanfang, ZHOU Hongbo. Degradation analysis of mechanical properties of corroded bars based on numerical simulation[J]. Journal of Hunan Institute of Engineering(Natural Science), 2018, 28(2):65‑69. (in Chinese) [百度学术]
罗小勇, 刘晋宏, 聂经纶. 锈蚀钢筋截面分布特征及轴向拉伸力学性能[J]. 建筑材料学报, 2019, 22(5):730‑736. [百度学术]
LUO Xiaoyong, LIU Jinhong, NIE Jinglun. Cross‑section distribution characteristics and tensile behavior of corroded reinforcing steel bars[J]. Journal of Building Materials, 2019, 22(5):730‑736. (in Chinese) [百度学术]
袁迎曙,贾福萍,蔡跃. 锈蚀钢筋的力学性能退化研究[J]. 工业建筑, 2000(1):43‑46. [百度学术]
YUAN Yingshu, JIA Fuping, CAI Yue. Deterioration of mechanical behavior of corroded bar[J]. Industrial Construction, 2000(1):43‑46. (in Chinese) [百度学术]
LIU X G, ZHANG W P, GU X L, et al. Probability distribution model of stress impact factor for corrosion pits of high‑strength prestressing wires[J]. Engineering Structures, 2021, 230:111686. [百度学术]
CERIT M, GENEL K, EKSI S. Numerical investigation on stress concentration of corrosion pit[J]. Engineering Failure Analysis, 2009, 16(7):2467‑2472. [百度学术]
CERIT M. Numerical investigation on torsional stress concentration factor at the semi elliptical corrosion pit[J]. Corrosion Science, 2013, 67:225‑232. [百度学术]
CERIT M. Corrosion pit‑induced stress concentration in spherical pressure vessel[J]. Thin‑Walled Structures, 2019, 136:106‑112. [百度学术]
HUANG Y F, WEI C, CHEN L J, et al. Quantitative correlation between geometric parameters and stress concentration of corrosion pits[J]. Engineering Failure Analysis, 2014, 44:168‑178. [百度学术]
马亚飞, 王强, 王磊, 等. 不同缺口类型钢筋力学性能试验及数值分析[J]. 建筑材料学报, 2019, 22(2):245‑253. [百度学术]
MA Yafei, WANG Qiang, WANG Lei, et al. Experimental and numerical analysis on mechanical behavior of different notched steel bars[J]. Journal of Building Materials, 2019, 22(2):245‑253. (in Chinese) [百度学术]
DEMIR U, GOKSU C, UNAL G, et al. Effect of fire damage on seismic behavior of cast‑in‑place reinforced concrete columns[J]. Journal of Structural Engineering, 2020, 146(11):4020232. [百度学术]
李国强, 王卫永. 钢结构抗火安全研究现状与发展趋势[J]. 土木工程学报, 2017, 50(12):1‑8. [百度学术]
LI Guoqiang, WANG Weiyong. State‑of‑the‑art and development trend of fire safety research on steel structures[J]. China Civil Engineering Journal, 2017, 50(12):1‑8. (in Chinese) [百度学术]