摘要
为了提升植物纤维增强复合材料的冲击性能,采用亚麻纤维增强环氧树脂(FFRP)与具有较高韧性的铝合金薄板进行层间混杂,制得亚麻纤维铝合金层合板(FFML);另外,为了提升铝合金薄板表面积及其与树脂基体的界面结合能力,对铝合金薄板进行了一系列表面处理,并与FFRP层合板进行了对比试验.结果表明:铝合金薄板可以有效提升植物纤维增强复合材料的初始刚度、最大冲击载荷及吸收能,并使其破坏模式从脆性破坏转变为塑性破坏;与FFRP层合板相比,经表面处理过的FFML最大冲击载荷与吸收能量分别提升了136%和58%,损伤面积下降了84%.
来源于农业产物的植物纤维具有较高的比强度和比模量、吸音隔热、环境友好等特
纤维金属层合板(FML)是金属薄板和纤维增强树脂预浸料交替铺设后,在一定温度和压力下固化成型的层间混杂复合材
本研究主要针对植物纤维增强复合材料韧性较低的问题,采用亚麻纤维织物/铝合金薄板层间混杂的方法,在不损伤亚麻纤维自身结构和牺牲复合材料面内性能的基础上,从降低损伤面积、提升最大冲击载荷及吸收能量等方面来改善复合材料的抗低速冲击性能.
植物纤维采用比利时LINEO公司提供的单向亚麻纤维织物(面密度200 g/
首先使用钻床对铝合金薄板进行钻孔以增强树脂在制备层合板过程中的流动性,钻孔孔径1 mm, 相邻两孔间隔25 mm.使用250颗粒度的打磨机沿金属轧制方向进行打磨抛光;之后将其置于碱性溶液(30 g/L 氢氧化钠水溶液以及30 g/L 碳酸钠水溶液)中在60 ℃水浴中加热1 min进行碱处理,取出后用蒸馏水冲洗并干燥;再将其放入400 g/L硝酸水溶液中,在室温下浸泡2~5 min后取出,用蒸馏水冲洗,随后浸入m(FeSO4)∶m(H2SO4)∶m(H2O)为15∶37∶48的硫酸铁水溶液中,在65 ℃下浸泡8 min后取出,用蒸馏水冲
采用热压成型工艺制备亚麻纤维铝合金层合板(FFML),并在相同工艺下制备亚麻纤维增强环氧树脂复合材料(FFRP)层合板作为参照组.制备前,将亚麻纤维织物放入烘箱中于100 ℃下烘4 h以去除水分.FFML与FFRP的铺层分别为[Al/0°/90°/Al/90°/0°/Al]与[0°/90°/0°/90°/0°/90°/0°],铺层后在90 ℃下保温30 min,120 ℃下保温2 h,具体铺层与成型工艺详见

图1 FFML与FFRP层合板的铺层与成型工艺示意图
Fig.1 Ply diagram and linear diagram of preparation of FFML and FFRP laminate
采用落锤冲击试验机(Instron Ceast 9350)对FFML与FFRP层合板进行低速冲击测试.将试样置于内径为50 mm的圆环形支撑之上,冲头直径为5 mm,冲击能量为10 J.通过扫描电子显微镜(Zeiss, Ultra55)观察试样的表面形貌.
采用弹塑性模型对铝合金的弹塑性行为进行数值计算.其中,采用各向同性弹性和各向同性硬化模型分别描述铝合金的弹性和塑性行为.对于本研究中使用的铝合金Al2040‑T3薄板,其杨氏模量E=73.1 GPa,泊松比ν=0.34,其各向同性硬化参数详见
采用能够模拟各向异性材料初始损伤和损伤演化的Abaqus模型对FFRP的弹脆性行为进行数值计算,包括张力下的纤维断裂、压缩时的纤维屈曲、横向拉伸和剪切作用下的基体开裂以及横向压缩和剪切下的基体破碎这4种失效模式.FFRP的线性损伤演化如

图2 FFRP的线性损伤演化
Fig.2 Linear damage evolution of FFRP
采用Hashin失效判据来反映材料损伤失效的过程.一般采用接触算法和接触对算法来模拟接触和交互.为模拟冲击下FFRP与铝合金之间的相互作用,定义了相邻两层之间的一般接触相互作用,以及冲头表面与各层中心节点集之间的面-面接触对,其接触均定义为线性函数的(软化)接触关系.

图3 典型网格划分方法
Fig.3 Typical mesh generation method

图4 铝合金表面微观形貌
Fig.4 Microstructure of the Al alloy

图5 FFML中铝合金-亚麻纤维层界面形貌
Fig.5 Microstructure of Al‑FFRP interface of FFML

图6 3种层合板在10 J冲击能量下的典型冲击载荷-位移曲线
Fig.6 Typical impact force‑displacement curves of three type of laminates subjected to 10 J impact energy

图7 冲击后3种层合板下表面和横截面的损伤形貌
Fig.7 Damage morphology for bottom and cross section of three type of laminates after impacting

图8 3种层合板在10 J冲击能量下的损伤面积及吸收能量
Fig.8 Damage area and absorbed energy of three type of laminates subjected to 10 J impact energy
采用有限元模拟经表面处理后FFML在10 J冲击能量下的破坏形貌,见

图9 有限元模拟经表面处理后FFML在10 J冲击能量下的破坏形貌
Fig.9 Simulation results of failure modes for treated FFML subjected to 10 J impact energy
(1)通过对铝合金进行表面处理,增加了其比表面积,从而显著提升了铝合金与树脂基体的界面结合能力,有效改善了其冲击韧性较差的问题.
(2)经表面改性后,亚麻纤维铝合金层合板的冲击性能比亚麻纤维环氧树脂层合板有明显提高,最大冲击载荷和吸收能量分别提升了136%、58%,且损伤面积下降了84%.
(3)亚麻纤维增强环氧树脂与铝合金的层间混杂能够大幅提升层合板的初始刚度、最大冲击载荷及吸收能量,层合板的破坏模式也从脆性破坏转变为塑性破坏.
参考文献
AHMAD F, CHOI H S, PARK M K. A review: Natural fiber composites selection in view of mechanical, light weight, and economic properties[J]. Macromolecular Materials and Engineering, 2015, 300(1):10‑24. [百度学术]
BOURMAUD A, BEAUGRAND J, SHAH D U, et al. Towards the design of high‑performance plant fibre composites[J].Progress in Materials Science, 2018, 97:347‑408. [百度学术]
朱泽华,朱德滨,程承.水泥基植物纤维复合材料耐水性研究[J].新型建筑材料, 2020, 47(8):103‑106. [百度学术]
ZHU Zehua, ZHU Debin, CHENG Cheng. Experimental research on water resistance of cement‑based plant fiber composites[J]. New Building Materials, 2020, 47(8):103‑106.(in Chinese) [百度学术]
陆秀丽.植物纤维增强水泥基复合材料研究进展[J].低温建筑技术,2020,42(8):28‑31. [百度学术]
LU Xiuli. Research progress of plant fiber cement‑based composite material[J]. Low Temperature Architecture Technology, 2020, 42(8):28‑31.(in Chinese) [百度学术]
马东方,马伯翰,张幸锵.冲击荷载下植物纤维增强高聚物复合材料的力学性能[J].高压物理学报,2019,33(2):117‑124. [百度学术]
MA Dongfang, MA Bohan, ZHANG Xingqiang. Mechanical properties of natural fiber reinforced polymer composites under impact loading[J]. Chinese Journal of High Pressure Physics, 2019, 33(2):117‑124. (in Chinese) [百度学术]
OHTA T, MORII T, HAMADA H. Mechanical property and fracture characteristics of glass and jute fiber reinforced polypropylene hybrid composites[J]. Journal of Materials Engineering, 2009(Suppl 2):387‑391, 395. (in Chinese) [百度学术]
胡静,蔡雄峰,胡昂,等.金属网对玻璃纤维增强复合材料低速冲击损伤特性的影响[J].复合材料科学与工程,2021(1):58‑64. [百度学术]
HU Jing, CAI Xiongfeng, HU Ang, et al. Influence of metal mesh on low‑velocity impact damage characteristics of glass fiber reinforced composites[J]. Composites Science and Engineering,2021(1):58‑64. (in Chinese) [百度学术]
CANTWELL W J, MORTON J. The impact resistance of composite materials‑A review[J]. Composites, 1991, 22(5), 347‑362. [百度学术]
DHAKAL H N, ZHANG Z Y, BENNETT N, et al. Low‑velocity impact response of non‑woven hemp fibre reinforced unsaturated polyester composites:Influence of impactor geometry and impact velocity[J]. Composite Structures, 2012, 94(9):2756‑2763. [百度学术]
PETRUCCI R, SANTULLI C, PUGLIA D, et al. Mechanical characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion[J]. Materials and Design, 2013, 49:728‑735. [百度学术]
SANJAY M R, MADHU P, JAWAID M, et al. Characterization and properties of natural fiber polymer composites:A comprehensive review[J]. Journal of Cleaner Production, 2018, 172:566‑581. [百度学术]
LEE H S, CHO D, HAN S O. Effect of natural fiber surface treatments on the interfacial and mechanical properties of henequen/polypropylene biocomposites[J]. Macromolecular Research, 2008, 16(5):411‑417. [百度学术]
RUKSAKULPIWAT Y, SRIDEE J, SUPPAKARN N, et al. Improvement of impact property of natural fiber‑polypropylene composite by using natural rubber and EPDM rubber[J]. Composites Part B:Engineering, 2009, 40(7):619‑622. [百度学术]
VLOT A. Impact loading on fibre metal laminates[J]. International Journal of Impact Engineering, 1996, 18(3):291‑307. [百度学术]
MACHADO GOMES VIEIRA L, DOS SANTOS J C, HALLAK PANZERA T, et al. Novel fibre metal laminate sandwich composite structure with sisal woven core[J]. Industrial Crops and Products, 2017, 99:189‑195. [百度学术]
PROLONGO S G, URENA A. Effect of surface pre‑treatment on the adhesive strength of epoxy‑aluminium joints[J]. International Journal of Adhesion and Adhesives, 2009, 29(1):23‑31. [百度学术]
公晋芳.硅藻土/聚丙烯复合材料的吸声性能研究[J].建筑材料学报,2018,21(4):678‑682. [百度学术]
GONG Jinfang. Investigation of sound absorption properties research of diatomite/polypropylene composite materials[J]. Journal of Building Materials, 2018, 21(4) :678‑682. (in Chinese) [百度学术]
杨建明,郭思彤,徐新华,等.气凝胶绝热板热工性能研究[J].建筑材料学报,2019,22(5):786‑791. [百度学术]
YANG Jianming, GUO Sitong, XU Xinhua, et al. Thermal performance study of aerogel insulating panels[J]. Journal of Building Materials,2019,22(5):786‑791. (in Chinese) [百度学术]
余煜玺,马锐,王贯春,等.高比表面积、低密度块状Al2O3气凝胶的制备及表征[J].材料工程,2019,47(12):136‑142. [百度学术]
YU Yuxi, MA Rui, WANG Guanchun, et al. Preparation and characterization of Al2O3 bulk aerogel with high specific surface area and low density[J]. Journal of Materials Engineering,2019,47(12):136‑142. (in Chinese) [百度学术]
汪亮, 宣天鹏, 周赟, 等. 铝合金表面硅烷处理技术的研究现状[J].电镀与环保, 2012, 32(6):3‑6. [百度学术]
WANG Liang, XUAN Tianpeng, ZHOU Yun, et al. Research status of silane treatment technology for aluminum alloy surface[J]. Electroplating and Pollution Control, 2012, 32(6):3‑6. (in Chinese) [百度学术]
RIDER A N, ARNOTT D R. Boiling water and silane pre‑treatment of aluminium alloys for durable adhesive bonding[J]. International Journal of Adhesion and Adhesives, 2000, 20(3):209‑220. [百度学术]