摘要
采用磁力搅拌+超声波分散+聚羧酸高效减水剂方法来提高纳米TiO2(NT)在水泥净浆中的分散性与稳定性,研究了不同掺量NT对水泥净浆力学性能的影响,通过水化热、热重-差示扫描量热(TG‑DSC)分析、压汞(MIP)等测试方法,研究NT对水泥水化性能的影响机理.结果表明:采取磁力搅拌20 min、超声波分散15 min、再磁力搅拌15 min,并辅以聚羧酸高效减水剂,可制得分散稳定的NT悬浮液;当NT掺量为2.0%时,水泥净浆的抗压强度最大,且在相同掺量下,使用悬浮液法制备的水泥净浆力学性能高于干混法;NT可显著缩短水泥水化的诱导期,提高水泥早期水化放热速率,改变CH的结晶度及取向,并优化硬化水泥净浆内部的孔隙结构,提高其力学性能.
纳米TiO2(NT)具有优异的光催化性能,将其与普通水泥基材料复合,以获得自清洁、降解NOx等污染性气体的功能,是目前传统水泥基材料功能化的一个研究热
鉴于此,本文采用机械搅拌、超声波分散以及外掺表面活性剂等不同分散方式,研究NT悬浮液的分散性及稳定性,并通过力学强度试验,对比分析悬浮液法和干混法对硬化水泥净浆强度的影响;通过水化热、热重-差示扫描量热(TG‑DSC)分析、扫描电镜(SEM)、压汞(MIP)等测试方法,研究NT对水泥净浆水化性能及微结构的影响机理.
湖南韶峰水泥集团有限公司生产的P·O 42.5水泥(C);上海麦克林公司生产的锐钛矿型纳米TiO2(NT),粒径25 nm,密度4.75 g/c
称取100 mL去离子水和1 g纳米TiO2,分别采用以下方法制备NT悬浮液:(1)机械分散(MS)
采用Malvern Panalytical产ZS‑90型激光粒度分析仪,测试NT悬浮液中NT颗粒的平均粒径,并以此评估悬浮液的分散性及稳定性;根据评估结果,确定最佳分散工艺.
分别采用2种NT掺入方式制备水泥净浆:(1)悬浮液法(S)——按1.2.1评估所得最佳分散工艺,先制备NT悬浮液,再将其与水泥搅拌均匀,制备水泥净浆;(2)干混法(M)——将NT直接与水泥干混拌匀后,再加水搅拌,制备水泥净浆.水泥净浆的配合比见
水化热测试采用TA instruments公司生产的TAM air Ⅲ型设备,连续测试42 h;热重-差示扫描量热(TG‑DSC)分析采用上海和晟仪器科技有限公司生产的HS‑DSC‑101型热分析仪,保护气氛为N2,样品质量为10 mg,温度区间为30~900 ℃,升温速率为10 ℃/min.扫描电镜(SEM)分析采用美国FEI公司生产的Quanta200型扫描电镜;压汞(MIP)测试采用美国康塔公司生产的Poremaster型压汞仪.

图1 不同分散方式下NT悬浮液的初始粒径
Fig.1 Initial particle size of NT suspension under different dispersion methods
由
将上述NT悬浮液分别静置15、30、45、60 min后,再测试平均粒径,结果见

图2 不同分散方法下悬浮液的稳定性
Fig.2 Stability of suspension under different mix methods
由
综合图

图3 减水剂对悬浮液分散性及稳定性的影响
Fig.3 Effect of water reducer on dispersion and stability of nano‑TiO2 suspension
由

图4 NT悬浮液的稳定性
Fig.4 Stability of NT suspension
由
综上所述,在最佳分散工艺下,加入聚羧酸高效减水剂制备的NT悬浮液稳定性最好,这一试验现象也与前述分析一致.

图5 不同分散方式对水泥净浆强度的影响
Fig.5 Influence of different dispersion methods on strength of cement pastes
由

图6 采用悬浮液法制备的掺NT水泥净浆的抗压强度
Fig.6 Compressive strength of cement pastes with NT prepared with the suspension

图7 NT对水泥水化放热的影响
Fig.7 Effect of NT on the heat of hydration of cement pastes
从
水化3、28 d后,水泥净浆的热分析见

图8 水泥净浆的热分析
Fig.8 Thermal analysis of cement pastes
由
(1) |
(2) |
(3) |
式中:wCH1为试件中CH含量;wCH2为试件中转化为CaCO3的CH含量;wCH为试件生成的CH总含量;w400、w500、w600、w700分别为在温度达到400、500、600、700 ℃时试件的剩余质量分数.
分别对比
根据

图9 水泥净浆的CH含量
Fig.9 CH content in cement pastes
由

图10 水泥净浆水化3、28 d时的SEM图
Fig.10 SEM images of cement pastes at 3, 28 d
由

图11 不同养护龄期下水泥净浆的孔体积-孔径分布曲线
Fig.11 Pore volume‑pore diameter distribution curves of cement pastes under different curing ages
由

图12 水泥净浆的孔径分布
Fig.12 Pore diameter distribution of cement pastes
由
(1)通过磁力搅拌与超声波分散复合,并辅以聚羧酸高效减水剂为表面活性剂,可制得分散性与稳定性良好的纳米TiO2(NT)悬浮液.
(2)与干混法制备的水泥净浆相比,悬浮液法制备的水泥净浆强度更高.随NT掺量增加,其强度呈先增大后下降趋势;当NT掺量为2.0%时,水泥净浆强度最大.
(3)掺2.0%NT使水泥的水化诱导期缩短,水化放热峰提前,对水泥早期水化促进作用明显.水泥净浆的微观结构更加密实,生成更多的水化产物C‑S‑H和Ca(OH)2,但当NT掺量增至10.0%时,水泥净浆内部出现大量团聚的NT,结构较为疏松.
(4)掺入适量NT能降低水泥净浆的孔隙率,使其中无害孔、少害孔数量明显增加;而当NT掺量增至10.0%时,其团聚现象明显,多害孔、有害孔占比增加.
参考文献
QIAN C X, ZHAO L F, FU D F, et al. Photocatalytic oxidation of nitrogen oxides by nano TiO2 immobilized on road surface materials[J].Journal of the Chinese Ceramic Society, 2005, 33(4):422‑427. [百度学术]
何军辉,姚武.沸石及水泥基材料二次负载TiO2的光催化性能[J].建筑材料学报,2020,23(1):35‑39. [百度学术]
HE Junhui, YAO Wu. Photocatalytic performance of twice loading TiO2 with Zeolite and cementitiousmaterials[J]. Journal of Building Materials, 2020,23(1):35‑39. (in Chinese) [百度学术]
沈卫国,赵清,王云天,等.二氧化钛纳米颗粒改性自洁净混凝土的制备研究[J].新世纪水泥导报,2016,22(1):9‑12. [百度学术]
SHEN Weiguo, ZHAO Qing, WANG Yuntian, et al. Preparation of titanium dioxide nano particle modified photocatalytic self‑cleaning concrete[J]. Cement Guide for New Epoch, 2016,22(1):9‑12. (in Chinese) [百度学术]
管申.纳米材料对水泥基材料水化和性能的影响[D].哈尔滨:哈尔滨工业大学,2017. [百度学术]
GUAN Shen. The effect of nanomaterials on the hydration and properties of cement‑based materials[D]. Harbin:Harbin Institute of Technology, 2017.(in Chinese) [百度学术]
MA B G, LI H N, ZHU Y C, et al. Influence of nano‑SiO2 and nano‑TiO2 on early hydration of calcium sulfaluminate cement[J]. Key Engineering Materials,2014,599:39‑45. [百度学术]
张峰领.纳米尺度颗粒对水泥基材料力学性能的影响特性及机制[D].哈尔滨:哈尔滨工业大学,2016. [百度学术]
ZHANG Fengling. Effect of nanoparticle on mechanical properties of cement‑based materials and its mechanism[D]. Harbin:Harbin Institute of Technology,2016.(in Chinese) [百度学术]
ZHANG R, CHENG X, HOU P K, et al. Influences of nano‑TiO2 on the properties of cement‑based materials:hydration and drying shrinkage [J]. Construction and Building Materials,2015,81:35‑41. [百度学术]
马韬.纳米颗粒火山灰活性对水泥基材料性能的影响及机理[D].杭州:浙江工业大学,2013. [百度学术]
MA Tao. Effect and mechanism of pozzolanic reactivity of nano‑particles on properties of cement‑based material[D]. Hangzhou:Zhejiang University of Technology,2013.(in Chinese) [百度学术]
魏荟荟.纳米CaCO3对水泥基材料的影响及作用机理研究[D].哈尔滨:哈尔滨工业大学,2013. [百度学术]
WEI Huihui. Study on effect and mechanism of nano‑CaCO3 in cement‑based materials[D]. Harbin:Harbin Institute of Technology,2013.(in Chinese) [百度学术]
张姣龙,朱洪波,柳献,等. 碳纳米管在水泥基复合材料中的分散性研究[J]. 武汉理工大学学报, 2012, 34(5):6‑9,24. [百度学术]
ZHANG Jiaolong, ZHU Hongbo, LIU Xian, et al. Research on dispersion of carbon nano tubes in cement based composite[J]. Journal of Wuhan University of Technology, 2012, 34(5):6‑9,24.(in Chinese) [百度学术]
罗健林,段忠东.碳纳米管的分散性及其增强水泥材料力学性能[J].建筑结构学报,2008(增刊1):246‑250. [百度学术]
LUO Jianlin, DUAN Zhongdong. Dispersion of multi‑walled carbon nanotubes(MWCNT) and mechanical properties of MWCNT reinforced cement‑based composite[J]. Journal of Building Structures, 2008 (Suppl 1):246‑250.(in Chinese) [百度学术]
朱洪波,王培铭,李晨,等.多壁碳纳米管在水泥浆中的分散性[J].硅酸盐学报,2012,40(10):1431‑1436. [百度学术]
ZHU Hongbo, WANG Peiming, LI Chen, et al. Research on dispersion of multi‑walled carbon nanotubes in cement paste[J]. Journal of the Chinese Ceramic Society, 2012, 40(10):1431‑1436. (in Chinese) [百度学术]
刘巧玲,孙伟,孙波,等.碳纳米管水性分散体的制备及其对水泥砂浆强度的影响[J].东南大学学报(自然科学版),2014,44(3):662‑667. [百度学术]
LIU Qiaoling, SUN Wei, SUN Bo, et al. Preparation of carbon nanotubes solution and its effects on mechanical properties of cement mortar[J]. Journal of Southeast University(Natural Science Edition), 2014,44(3):662‑667. (in Chinese) [百度学术]
董健苗,刘晨,龙世宗.纳米SiO2在不同分散条件下对水泥基材料微观结构性能的影响[J].建筑材料学报,2012,15(4):490‑493. [百度学术]
DONG Jianmiao, LIU Chen, LONG Shizong, et al. Research on the microstructure and performance of the cement‑based materials by the stirring method of nanometer SiO2[J]. Journal of Building Materials, 2012,15(4):490‑493.(in Chinese) [百度学术]
BOLHASSANI M, SAMANI M. Effect of type, size and dosage of nano‑silica and micro‑silica on properties of cement paste and mortar[J]. ACI Materials Journal, 2015,112(2):259‑266. [百度学术]
匡亚川,张召环,季小勇,等.具有降解汽车尾气性能的纳米TiO2光催化水泥浆体研究[J].功能材料,2017,48(2):2241‑2246. [百度学术]
KUANG Yachuan, ZHANG Zhaohuan, JI Xiaoyong, et al. Study on nano‑TiO2 photocatalytic cement paste with automobile exhaust degradation capacity[J]. Journal of Functional Materials, 2017,48(2):2241‑2246. (in Chinese) [百度学术]
莫子勇,吴张永,王娴,等.纳米颗粒在水基础液中团聚机理及控制[J].材料导报,2014,28(增刊1):53‑55. [百度学术]
MO Ziyong, WU Zhangyong, WANG Xian, et al. Agglomeration and controlling mechanism of nano particles in water[J]. Materials Reviews, 2014, 28(Suppl 1):53‑55. (in Chinese) [百度学术]
刘俊超.纳米CaCO3对水泥基材料性能影响及应用研究[D].重庆:重庆大学,2016. [百度学术]
LIU Junchao. Influence of nano‑CaCO3 on properties of cement‑based materials and its application[D]. Chongqing:Chongqing University,2016. (in Chinese) [百度学术]
张艾萍,胡剑文,杨洋,等.换热器内超声空化效应影响因素数值研究[J].工程热物理学报,2012,33(8):1387‑1390. [百度学术]
ZHANG Aiping, HU Jianwen, YANG Yang, et al. Numerical study on the factors of ultrasonic cavitation effect in heat exchanger[J]. Journal of Engineering Thermophysics, 2012,33(8):1387‑1390. (in Chinese) [百度学术]
张笑,宋武林,卢照.纳米二氧化钛分散液稳定性的研究进展[J].材料导报,2019,33(增刊1):16‑21. [百度学术]
ZHANG Xiao, SONG Wulin, LU Zhao, et al. Research progress on the stability of nanometer titanium dioxide dispersion[J]. Materials Review, 2019,33(Suppl 1):16‑21. (in Chinese) [百度学术]
梅军鹏,徐智东,李海南,等.蒸汽养护条件下纳米TiO2对粉煤灰-水泥体系早期力学性能的影响[J].建筑材料学报, 2021,24(4):694‑700. [百度学术]
MEI Junpeng, XU Zhidong, LI Hainan, et al. Influence of nano‑TiO2 on the early mechanical properties of fly ash‑cement system under steam curing[J]. Journal of Building Materials, 2021,24(4):694‑700. (in Chinese) [百度学术]
YOUSEFI A, ALLAHVERDI A, HEJAZI P. Effective dispersion of nano‑TiO2 powder for enhancement of photocatalytic properties in cement mixes[J]. Construction and Building Materials,2013,41:224‑230. [百度学术]
DU S, WU J L, ALSHAREEDAH O, et al. Nanotechnology in cement‑based materials:A review of durability, modeling, and advanced characterization[J]. Nanomaterials, 2019, 9(9):1213. [百度学术]
JEE H, PARK J, ZALNEZHAD E, et al. Characterization of titanium nanotube reinforced cementitious composites:Mechanical properties, microstructure, and hydration[J]. Materials, 2019, 12(10):1617‑1634. [百度学术]
ZHANG Y R, KONG X M, LU Z B, et al. Influence of triethanolamine on the hydration product of portlandite in cement paste and the mechanism[J]. Cement and Concrete Research, 2016, 87:64‑76. [百度学术]
JALAL M, TAHMASEBI M. Assessment of nano‑TiO2 and class F fly ash effects on flexural fracture and microstructure of binary blended concrete[J]. Science and Engineering of Composite Materials, 2015,22(3):263‑270. [百度学术]