摘要
为探究经磷酸刻蚀后钢渣粉比表面积增大及水化活性提高的根源,采用放电等离子体烧结法制备了致密钢渣片并进行了抛光,研究了其被磷酸刻蚀不同时间后的形貌及矿物特性.结果表明:经磷酸刻蚀后,钢渣表面出现片状产物团聚而成的磷酸钙刻蚀产物;随着刻蚀时间的延长,磷酸钙覆盖面积逐渐增大,刻蚀至30 s后覆盖面积增加减缓;磷酸钙优先覆盖区域为硅酸钙和Ca‑Al‑Mg‑Si‑O相,而RO相则至30 s后才被磷酸钙大量覆盖;钢渣中的硅酸钙表面出现裂纹;磷酸钙的生成和硅酸钙相中裂纹的出现可以显著提高钢渣表面粗糙度.
钢渣是炼钢过程中的副产物,国内利用率低于30
为提高钢渣粉的活性,Li
目前表面改性对形貌的影响主要采用SEM进行观
鉴于此,为了解磷酸-酒精(PAA)溶液刻蚀钢渣粉过程中的形貌及矿物学变化,本文首先采用放电等离子体烧结法制备了致密的钢渣片,并采用环氧树脂浸渍抛光,获得纳米级光滑表面,然后采用PAA溶液进行刻蚀,结合背散射电子(BSE)成像、数字全息显微(DHM)图像和能谱分析(EDX)对刻蚀前后钢渣片表面进行表征,以期为钢渣粉的化学刻蚀改性机理研究提供基础理论指导.
钢渣骨料,来自江苏融达新材料股份有限公司;分析纯磷酸,质量分数≥85.0%;分析纯无水乙醇,质量分数≥99.5%.磷酸-酒精(PAA)溶液的制备过程如下:按质量分数称取少量无水乙醇,将其加入定量磷酸中,最终获得质量分数为80%的PAA溶液.
从100 kg钢渣骨料中均匀挑选5 kg钢渣骨料,采用球磨机粉磨60 min以获得钢渣粉,然后用孔径75 μm(200目)筛子去除钢渣粉中粒径超过75 μm的铁颗粒等杂质,以确保在放大500~1 000倍尺度下获得尺寸分布均匀的钢渣粉.
从1 000 g钢渣粉中选取5 g钢渣粉,采用内径为20 mm的双向石墨冲压模具在30 MPa下压制30 s,置于HPD5型放电等离子体烧结系
将压片后的钢渣粉用环氧树脂浸渍并固化24 h,先采用38 μm(400目)、18 μm(800目)、10 μm(1 200目)、5 μm(2 500目)砂纸进行抛光,再采用0.25 μm抛光液抛光.
抛光后的钢渣表面一半部分喷镀惰性铂(Pt),然后将其置于PAA溶液中刻蚀至相应时间.取出后先采用无水乙醇冲洗,再用高吸水性纸迅速吸去表面溶液,并采用常温(25 ℃)吹风机吹干.PAA溶液刻蚀钢渣示意图见

图1 PAA溶液刻蚀钢渣示意图
Fig.1 Schematic diagram of PAA solution etching steel slag
抛光后致密钢渣片表面物相分析见

图2 抛光后致密钢渣片表面物相分析
Fig.2 Phases analysis of polished dense steel slag surface
Huo

图3 不同刻蚀时间下钢渣片表面BSE图
Fig.3 BSE images of etched steel slag surfaces at different etching times

图4 不同刻蚀时间下钢渣片表面各物相面积比
Fig.4 Area ratio of steel slag surfaces at different etching times
由图
笔者前期研究发现,经磷酸刻蚀后钢渣粉比表面积均得到显著提

图5 钢渣片表面粗糙度变化
Fig.5 Roughness change of steel slag surface
为了解钢渣中不同矿物的刻蚀性及刻蚀产物的组成和形貌,对刻蚀区及未刻蚀区进行扫描电镜观察,结果如

图6 钢渣片表面物相变化
Fig.6 Phase change of steel slag surface
为确定刻蚀产物的形貌及组成,采用SEM和EDX进行分析,结果如

图7 刻蚀产物SEM图
Fig.7 SEM images of etching product
由前文可知,表面粗糙化是PAA溶液刻蚀钢渣粉比表面积增大的原因之一,并且钢渣粉中Ⅰ、Ⅳ相均未被刻蚀.值得注意的是,经过磷酸刻蚀后,钢渣中活性矿物变化情况未知.但由于刻蚀产物磷酸钙在酒精溶液中的溶解度较低而迅速沉淀,导致钢渣中被刻蚀矿物无法观测.因此,先采用大量酒精溶液对刻蚀钢渣片表面进行冲洗后再进一步进行SEM观察,结果如

图8 磷酸刻蚀钢渣片反应物相SEM图
Fig.8 SEM images of reacted phases in PAA solution etched steel slag surface
(1)经磷酸刻蚀后,钢渣片表面均出现由薄片组成的团状磷酸钙刻蚀产物,这些磷酸钙产物优先覆盖硅酸钙和Ca‑Al‑Mg‑Si‑O相分布区域;随着刻蚀时间的延长,覆盖面积迅速增加,刻蚀至30 s后,覆盖面积增加量减缓,刻蚀反应进入减速阶段.
(2)经磷酸刻蚀后,磷酸钙的生成和硅酸钙相中裂纹的出现导致钢渣片表面粗糙度增加,这是钢渣粉早期活性提高的根源.
参考文献
JIANG Y, LING T C, SHI C J, et al. Characteristics of steel slags and their use in cement and concrete—A review[J]. Resources, Conservation and Recycling, 2018, 136:187‑197. [百度学术]
GUO J L, BAO Y P, WANG M. Steel slag in China:Treatment, recycling, and management[J]. Waste Management, 2018, 78:318‑330. [百度学术]
侯新凯, 徐德龙, 薛博, 等. 钢渣引起水泥体积安定性问题的探讨[J]. 建筑材料学报, 2012, 15(5):588‑595. [百度学术]
HOU Xinkai, XU Delong, XUE Bo, et al. Study on volume stability problems of cement caused by steel slag[J]. Journal of Building Materials, 2012, 15(5):588‑595. (in Chinese) [百度学术]
WANG Q, YAN P Y, YANG J W, et al. Influence of steel slag on mechanical properties and durability of concrete[J]. Construction and Building Materials, 2013, 47:1414‑1420. [百度学术]
ZHAO J H, YAN P Y, WANG D M. Research on mineral characteristics of converter steel slag and its comprehensive utilization of internal and external recycle[J]. Journal of Cleaner Production, 2017, 156:50‑61. [百度学术]
LI J X, YU Q J, WEI J X, et al. Structural characteristics and hydration kinetics of modified steel slag[J]. Cement and Concrete Research, 2011, 41(3):324‑329. [百度学术]
ZHU X, HOU H B, HUANG X Q, et al. Enhance hydration properties of steel slag using grinding aids by mechanochemical effect[J]. Construction and Building Materials, 2012, 29:476‑481. [百度学术]
LI B L, WANG Y H, YANG L, et al. Sulfate resistance and hydration products of steam cured steel slag blended cement mortar under dry‑wet cycle[J]. Journal of Sustainable Cement‑Based Materials, 2019, 8(6):353‑366. [百度学术]
LIU Z, ZHANG D W, LI L, et al. Microstructure and phase evolution of alkali‑activated steel slag during early age[J]. Construction and Building Materials, 2019, 204:158‑165. [百度学术]
WANG X, NI W, LI J J, et al. Carbonation of steel slag and gypsum for building materials and associated reaction mechanisms[J]. Cement and Concrete Research, 2019, 125:105893. [百度学术]
侯新凯, 袁静舒, 杨洪艺, 等. 钢渣中水化惰性矿物的化学物相分析[J]. 硅酸盐学报, 2016, 44(5):651‑657. [百度学术]
HOU Xinkai, YUAN Jingshu, YANG Hongyi, et al. Chemical phase analysis of nonhydraulic minerals in steel slag[J]. Journal of the Chinese Ceramic Society, 2016, 44(5):651‑657. (in Chinese) [百度学术]
HUO B B, LI B L, HUANG S Y, et al. Hydration and soundness of phosphoric acid modified steel slag powder[J]. Construction and Building Materials, 2020, 254:119319. [百度学术]
HUO B B, LI B L, CHEN C, et al. Surface etching and early age hydration mechanisms of steel slag powder with formic acid[J]. Construction and Building Materials, 2021, 280:122500. [百度学术]
霍彬彬, 李保亮, 陈春, 等. 冰乙酸干法化学改性钢渣粉机理及其性能[J]. 硅酸盐学报, 2021, 49(5):948‑954. [百度学术]
HUO Binbin, LI Baoliang, CHEN Chun, et al. Mechanism and properties of glacial acetic acid modified steel slag powder via dry chemical modification method[J]. Journal of the Chinese Ceramic Society, 2021, 49(5):948‑954. (in Chinese) [百度学术]
HUANG S, CHENG X W, GUO X Y, et al. Ethanol plasma‑induced polymerization of carbon fiber surface for improving mechanical properties of carbon fiber‑reinforced lightweight oil well cement[J]. Applied Surface Science, 2019, 497:388‑401. [百度学术]
WANG F J, LEI S, OU J F, et al. Effect of PDMS on the waterproofing performance and corrosion resistance of cement mortar[J]. Applied Surface Science, 2020, 507:145016. [百度学术]
YE S X, FENG P, LIU Y, et al. In situ nano‑scale observation of C3A dissolution in water[J]. Cement and Concrete Research, 2020, 132:34‑39. [百度学术]
CHEN Z M, LI R, ZHENG X M, et al. Carbon sequestration of steel slag and carbonation for activating RO phase[J]. Cement and Concrete Research, 2021, 139:23‑36. [百度学术]
KOCABA V, GALLUCCI E, SCRIVENER K L. Methods for determination of degree of reaction of slag in blended cement pastes[J]. Cement and Concrete Research, 2012, 42(3):511‑525. [百度学术]
PEIPONEN K E, SILVENNOINEN R, GU C, et al. Surface roughness inspection of cold‑rolled aluminium by laser light reflection[J]. Optics and Laser Technology, 1992, 24(4):223‑225. [百度学术]