摘要
设计了 3组连接方式的装配式桥墩,在连接节点处采用等离子体改性碳纳米管(P‑CNT)混凝土,研究了低周往复荷载作用下,桥墩连接节点处P‑CNT混凝土受力时电阻的变化情况,以验证P‑CNT混凝土应用于桥墩节点进行智能监测的可能性.结果表明:3组连接方式下,P‑CNT混凝土均表现出良好的力学性能和压敏性能;当连接节点处混凝土出现裂缝或分离脱落时,其电阻值出现突增现象,且电阻突增变化率随着节点处混凝土破坏程度的升高而增加.说明P‑CNT混凝土智能材料可以有效监测节点处的受力状态.
因具有建造速度快、对周围坏境影响小、成本费用低等优点,装配式桥梁得到广泛推广及应用,其最为重要的部分在于桥墩连接节
对CNT表面进行等离子体改性处理,得到等离子体改性碳纳米管(P‑CNT
综上,本文将P‑CNT混凝土应用于装配式桥墩连接节点处,研究桥墩节点处P‑CNT混凝土在地震作用下载荷与电阻之间的对应关系,以实现对结构受力状态的智能监测.
根据实际工程案例,在承插式连接方式的基础上,另外设计2种新型连接方式,共3组试件,分别为A组承插式连接试件、B组套筒连接试件和C组钢板连接试件.本试验以加载条件为准,桥墩模型缩尺比例为1∶10,去掉墩帽,调整墩身尺寸.桥墩装配时,需要在墩台内预留槽孔,为确保其连接性

图1 各组试件尺寸示意图
Fig.1 Size schematic diagram of each group of specimen(size:mm)
试件墩身配筋率遵循与实际工程墩身配筋率一致的设计原则.由于实际工程采用56根32的HRB400级钢筋,配筋率为1.39%,试件选配4根12的HRB400钢筋作为纵筋,纵筋和箍筋需要保证弯曲破坏优先发生在墩底位置.经计算,A组和C组试件的箍筋采用8@58钢筋,B组试件的箍筋采用8@54钢筋,钢筋级别均为HRB400.桥墩墩台配筋按照规范设计要求,需要保证试件在加载过程中,墩台不发生剪切破坏或者不先于墩身破坏.
3组试件的预制墩身和墩台均采用C50自密实混凝土进行浇筑,配合比如
制作墩身和墩台的同时,另外浇筑3个尺寸为150 mm×150 mm×150 mm的自密实混凝土立方体试件,养护28 d后进行抗压强度试验,其立方体抗压强度值取3个试件的平均值,为51.76 MPa.
B组套筒连接试件由2种口径的钢管拼接而成,拼接前将钢管预先埋入墩台和墩身中.其中与墩身相连的钢管外径为14 mm,壁厚为2 mm,长为500 mm;与墩台相连的钢管内径为14 mm,壁厚为2 mm,长为320 mm.C组钢板连接试件由4块钢板焊接而成,预先安装在墩台内,安装时,直接将墩身插入墩台即可.3组试件的墩身和墩台养护完成后进行拼装,并用P‑CNT混凝土作为连接材料灌入槽孔内.
P‑CNT混凝土制作方

图2 P‑CNT和CNT初始分散性对比
Fig.2 Initial dispersion comparison of P‑CNT and NT
3组试件的制作及拼装均在苏州科技大学江苏省重点结构工程大厅内完成.各组预制试件照片如

图3 各组预制试件照片
Fig.3 Photos of each group of prefabricated specimen
影响P‑CNT混凝土电阻值的因素包括电阻测试方法和电极选取方

图4 电极块和试件照片
Fig.4 Photos of copper rod electrode block and specimen

图5 连接节点处记号标注
Fig.5 Marking at connected nodes
本次试验采用平行四连杆加载装置,先将试件固定在加载架上,再安装电阻测试仪器.试件加载装置和测试方法示意图见

图6 试件加载装置和测试方法示意图
Fig.6 Diagram of loading device and testing method
在低周往复作用下,进行装配式桥墩连接节点处P‑CNT混凝土压敏性能测试时,竖向荷载(N)采用的轴压
(1) |
式中:为轴压比;为墩身的横截面面积;为混凝土的轴心抗压强度,由经验公式、 可得,=39.34 MPa.
根据
选取各组连接节点处

图7 各组节点处监测数据
Fig.7 Monitoring data at nodes of each group

图8 节点破坏时各组电阻变化及实例照片
Fig.8 Resistance change and example photo of each group specimen during node failure
(1)在低周往复作用下,3组试件连接节点处P‑CNT混凝土的电阻值均随着荷载的增加而下降,随着荷载的减小而上升,电阻值与荷载一一对应,表现出较稳定的压敏性能,能够反映节点处的受力变化情况.
(2)当节点处出现裂缝或者混凝土分离现象时,P‑CNT混凝土电阻值呈现突增状态,且电阻突增变化率随着荷载的增大而增大,能够及时起到预警和监控作用.
参考文献
于玲, 陈朋, 刘杰, 等. 基于Copula函数的预应力钢筋节点连接的装配式双柱混凝土桥墩主要失效模式分析[J]. 沈阳建筑大学学报(自然科学版), 2019, 35(5):885‑891. [百度学术]
YU Ling, CHEN Peng, LIU Jie, et al. Analysis of main failure modes of assembled double‑column concrete piers connected by prestressed steel bars based on copula function[J]. Journal of Shenyang Jianzhu University(Natural Science), 2019,35(5):885‑891.(in Chinese) [百度学术]
MAKUL N. Advanced smart concrete:A review of current progress, benefits and challenge[J]. Journal of Cleaner Production, 2020, 274:122899‑122899. [百度学术]
HAN B G, SUN S W, DING S Q, et al. Review of nanocarbon‑engineered multifunctional cementitious composites[J]. Composites Part A, 2015, 70:69‑81. [百度学术]
王钧, 白雪石, 赵金友, 等. 碳纳米管增强RPC弯曲疲劳性能[J]. 建筑材料学报, 2020, 23(6):1345‑1349,1373. [百度学术]
WANG Jun, BAI Xueshi, ZHAO Jinyou, et al. Carbon nanotubes enhance RPC bending fatigue performance[J]. Journal of Building Materials, 2020, 23(6):1345‑1349,1373.(in Chinese) [百度学术]
秦煜, 阮鹏臻, 唐元鑫, 等. 碳纳米管水泥基复合材料导电特性影响因素研究进展[J]. 硅酸盐学报, 2021, 49(2):411‑419. [百度学术]
QIN Yu, RUAN Pengzhen, TANG Yuanxin, et al. Research progress of influencing factors on the electrical conductivity of carbon nanotube cement‑based composites[J]. Journal of the Chinese Ceramic Society, 2021, 49(2):411‑419.(in Chinese) [百度学术]
IRSHIDAT M R, AL‑NUAIMI N, SALIM S, et al. Carbon nanotubes dosage optimization for strength enhancement of cementitious composites[J]. Procedia Manufacturing, 2020, 44:366‑370. [百度学术]
KIM H K, PARK I S, LEE H K. Improved piezoresistive sensitivity and stability of CNT/cement mortar composites with low water‑binder ratio[J]. Composite Structures, 2014, 116:713‑719. [百度学术]
DING S Q, RUAN Y F, YU X, et al. Self‑monitoring of smart concrete column incorporating CNT/NCB composite fillers modified cementitious sensors[J]. Construction and Building Materials, 2019, 201:127‑137. [百度学术]
SUCHORZEWSKI J, PRIETO M, MUELLER U. An experimental study of self‑sensing concrete enhanced with multi‑wall carbon nanotubes in wedge splitting test and DIC[J]. Construction and Building Materials, 2020, 262:120871. [百度学术]
JIANG S F,WANG J,TONG S Y, et al. Damage monitoring of concrete laminated interface using piezoelectric‑based smart aggregate[J]. Engineering Structures,2021, 228:111489. [百度学术]
宋国林, 张泽, 沈成柱, 等 .低温等离子体改性碳纳米管对再生沥青性能的影响[J]. 材料导报, 2020, 34(2):2052‑2057. [百度学术]
SONG Guolin, ZHANG Ze, SHEN Chengzhu, et al. The effect of low‑temperature plasma modification of carbon nanotubes on the performance of recycled asphalt[J]. Materials Reports, 2020, 34(2):2052‑2057.(in Chinese) [百度学术]
刘洋洋. 改性碳纳米管的掺入对混凝土性能影响[D]. 苏州:苏州科技大学, 2018. [百度学术]
LIU Yangyang. The influence of the incorporation of modified carbon nanotubes on the properties of concrete[D]. Suzhou:Suzhou University of Science and Technology, 2018.(in Chinese) [百度学术]
徐艳, 曾增, 葛继平, 等. 承插式预制拼装桥墩的最小合理承插深度[J]. 同济大学学报(自然科学版), 2019, 47(12):1706‑1711. [百度学术]
XU Yan, ZENG Zeng, GE Jiping, et al. Minimum reasonable insertion depth of socket prefabricated bridge piers[J]. Journal of Tongji University(Natural Science), 2019, 47(12):1706‑1711.(in Chinese) [百度学术]
赵昕, 黄存旺, 傅佳丽, 等. 石墨烯水泥基复合材料的电学性能[J]. 建筑材料学报, 2022, 25(1):8‑15. [百度学术]
ZHAO Xin, HUANG Cunwang, FU Jiali, et al. Electrical properties of graphene cement‑based composites[J]. Journal of Building Materials, 2022, 25(1):8‑15.(in Chinese) [百度学术]
姚斌. 环境因素对纳米碳纤维混凝土压敏特性的影响[D]. 哈尔滨:哈尔滨工业大学, 2013. [百度学术]
YAO Bin. The influence of environmental factors on the compressive characteristics of nano‑carbon fiber concrete[D]. Harbin:Harbin Institute of Technology, 2013.(in Chinese) [百度学术]
赵建锋, 孙伟帅, 李刚. 不同轴压比钢筋混凝土圆柱桥墩地震易损性分析[J]. 世界地震工程, 2018, 34(4):31‑37. [百度学术]
ZHAO Jianfeng, SUN Weishuai, LI Gang. Seismic vulnerability analysis of reinforced concrete cylindrical piers with different axial compression ratios[J]. World Earthquake Engineering, 2018, 34(4):31‑37.(in Chinese) [百度学术]
王琴, 王健, 刘伯伟, 等. 多壁碳纳米管水泥基复合材料的压敏性能研究[J]. 硅酸盐通报, 2016, 35(9):2733‑2740. [百度学术]
WANG Qin, WANG Jian, LIU Bowei, et al. Study on pressure‑sensitive properties of multi‑walled carbon nanotube cement‑based composites [J]. Bulletin of the Chinese Ceramic Society, 2016, 35(9):2733‑2740.(in Chinese) [百度学术]
秦煜, 唐元鑫, 阮鹏臻, 等. 碳纳米管水泥基复合材料压阻效应的多尺度研究进展[J]. 化工进展, 2021, 40(8):4278‑4289. [百度学术]
QIN Yu, TANG Yuanxin, RUAN Pengzhen, et al. Multi‑scale research progress on the piezoresistive effect of carbon nanotube cement‑based composites[J]. Chemical Industry and Engineering Progress, 2021, 40(8):4278‑4289.(in Chinese) [百度学术]