摘要
通过单轴拉伸、三点弯曲和抗压强度试验,研究粉煤灰掺量对应变硬化水泥基复合材料(SHCC)力学性能和损伤特征的影响,并利用数字图像相关技术对整个拉伸加载过程进行分析,提出利用开裂面积和分形维数量化SHCC试件的损伤程度,得到SHCC在加载过程中的应变演化和损伤特征.结果表明:随着粉煤灰掺量的增加,SHCC的拉伸强度、抗压强度及抗弯强度均逐渐降低,耗能能力逐渐提高,变形性能得到改善,但损伤程度增加;通过数字图像相关技术获得的应变云图可以直观观测SHCC的应变演化;开裂面积比和分形维数能够有效表征SHCC的损伤程度及开裂复杂性,可作为描述其损伤的度量指标.
为了克服混凝土的脆性问题,相关学者将纤维掺加到混凝土或水泥砂浆
为研究粉煤灰掺量对SHCC力学性能及损伤特征的影响,本文基于DIC技术,采用单轴拉伸、三点弯曲和抗压强度试验,对掺加粉煤灰的SHCC(FA‑SHCC)的力学性能进行研究,实现了加载过程中应变演化的可视化,同时提出利用开裂面积比(裂缝面积与试件面积的比值)及分形维数来表征SHCC的损伤程度,为日后表征和量化材料损伤提供一定的方法支持.
水泥(C)为P·O 42.5普通硅酸盐水泥;粉煤灰(FA)为平均粒径6~7 μm的一级粉煤灰,烧失量为0.96%(质量分数,文中涉及的组成、掺量、比值等除特殊说明外均为质量分数或质量比),其化学组成见
试件的制备过程见

图1 试件的制备过程
Fig.1 Preparation process of specimens
用日本岛津生产的万能试验机进行力学性能测试.对边长为70.7 mm的立方体试件进行抗压试验,加载方式为荷载控制,得到纯浆体和FA‑SHCC的抗压荷载及抗压强度.三点弯曲试验的试件为40 mm×40 mm×160 mm的棱柱体,加载过程采用位移控制,以0.1 mm/min的加载速率对试件进行缓慢加载,直至试件失效.拉伸性能测试试件为哑铃型,其具体尺寸参照文献[
纯浆体和FA‑SHCC的抗压性能见

图2 纯浆体和FA‑SHCC的抗压性能
Fig.2 Compressive properties of mortar and FA‑SHCC
FA‑SHCC的弯曲荷载-位移曲线见

图3 FA‑SHCC的弯曲荷载-位移曲线
Fig.3 Bending load‑displacement curves of FA‑SHCC
对FA‑SHCC弯曲荷载-位移曲线进行分析和计算,得到初裂荷载F0、峰值荷载Fmax、吸能能力Ea、初裂位移d0和峰值位移dmax(峰值荷载对应的位移)等弯曲性能参数,结果见
FA‑SHCC的直接拉伸应力-应变曲线见

图4 FA‑SHCC的直接拉伸应力-应变曲线
Fig.4 Direct tensile stress‑strain curves of FA‑SHCC
根据FA‑SHCC的直接拉伸应力-应变曲线,得到其拉伸性能参数:初裂强度σ0、峰值应力σmax、应变能Es(峰值应力-应变曲线下的面积)、初裂应变ε0和峰值应变εmax,结果见
利用DIC,对工业相机记录的试验过程图片进行全场应变计算,结果见

图5 FA‑SHCC全场应变云图
Fig.5 Full‑filed strain cloud diagram of FA‑SHCC
利用图像处理软件对FA‑SHCC直接拉伸失效图片进行处理,从试件表面提取裂缝,结果见

图6 提取的FA‑SHCC裂缝
Fig.6 Extracted cracks of FA‑SHCC
利用图形分析软件对
从拉伸试件开裂位置处切取块状试样进行SEM观测,FA1.2的SEM照片见

图7 FA1.2的SEM照片
Fig.7 SEM images of FA1.2
(1)随着粉煤灰掺量的增加,应变硬化水泥基复合材料(SHCC)的拉伸强度、抗压强度及抗弯强度逐渐降低,耗能能力逐渐提高,且其变形性能得到改善,但损伤程度增加.
(2)通过数字图像相关技术对SHCC直接拉伸加载过程进行拍摄分析,得到不同粉煤灰掺量下SHCC的水平、竖向应变云图,能够较为直观地观测SHCC抗拉过程中弹性阶段和开裂阶段的应变演化.
(3)本文提出的开裂面积比及分形维数能够很好地反映材料的损伤程度及开裂复杂性,可作为描述材料损伤的度量指标.
参考文献
苏骏, 李磊, 吴鹏, 等. 钢纤维与 PVA 纤维对超高性能混凝土强度及抗冲磨性能影响研究[J]. 混凝土与水泥制品, 2019(11):39‑42. [百度学术]
SU Jun, LI Lei, WU Peng, et al. Study on the effect of steel fibers and PVA fibers on the strength and impact abrasion resistance of ultra‑high performance concrete[J]. China Concrete and Cement Products, 2019(11):39‑42.(in Chinese) [百度学术]
HAMID R, MASOUD J, MASOUD L. Study on fiber hybridization effect of engineered cementitious composites with low‑ and high‑modulus polymeric fibers [J]. Construction and Building Materials, 2016, 112:739‑746. [百度学术]
FELEKOGLU K, FELEKOGLU B, RANADE R, et al. The role of flaw size and fiber distribution on tensile ductility of PVA‑ECC[J]. Composite Part B:Engineering,2014, 56:536‑545. [百度学术]
LAWLER J S, ZAMPINI D, SHAH S P. Micro‑fiber and macro‑fiber hybrid fiber reinforced concrete [J]. Journal of Materials in Civil Engineering, 2005, 17 (5):595‑604. [百度学术]
LI V C. From micromechanics to structural engineering—The design of cementitious composites for civil engineering applications [J]. Japan Society of Civil Engineers, 1993, 10(2):37‑48. [百度学术]
HE S, QIU J S, LI J X, et al. Strain hardening ultra‑high performance concrete (SHUHPC) incorporating CNF‑coated polyethylene fibers[J]. Cement and Concrete Research, 2017, 98:50‑60. [百度学术]
YU K Q, YU J T, DAI J G, et al. Development of ultra‑high performance engineered cementitious composites using polyethylene (PE) fibers[J]. Construct Building Materials, 2018, 158:217‑227. [百度学术]
HERAVI A A, CUROSU I, MECHTCHERINE M. A gravity‑driven split Hopkinson tension bar for investigating quasi‑ductile and strain‑hardening cement‑based composites under tensile impact loading[J]. Cement and Concrete Composites, 2020, 105:103430. [百度学术]
胡春红,李珍珍,汤广田. 不同养护环境下 SHCC 单轴拉伸性能试验研究[J]. 河南工业大学学报(自然科学版), 2017, 36(1):129‑135. [百度学术]
HU Chunhong, LI Zhenzhen, TANG Guangtian. Experimental research on uniaxial tensile properties of SHCC under different curing environment[J]. Journal of Henan Polytechnic University (Natural Science), 2017, 36 (1):129‑135. (in Chinese) [百度学术]
WANG S X, LI V C. Engineered cementitious composites with high‑volume fly ash[J]. ACI Materials Journal, 2007, 104(3):233‑243. [百度学术]
MUSTAFA S, ERDOGAN O, HASAN E Y, et al. Effect of fly ash and PVA fiber on microstructural damage and residual properties of engineered cementitious composites exposed to high temperatures[J]. Journal of Materials in Civil Engineering, 2011, 23(12):1735‑1745. [百度学术]
YU J T, LIN J H, ZHANG Z G, et al. Mechanical performance of ECC with high‑volume fly ash after sub‑elevated temperatures[J]. Construction and Building Materials, 2015, 99:82‑89. [百度学术]
ZHANG Z G, LIU J C, XU X Q, et al. Effect of sub‑elevated temperature on mechanical properties of ECC with different fly ash contents[J]. Construction and Building Materials, 2020, 262:120096. [百度学术]
万小梅, 刘杰, 朱亚光, 等. 粉煤灰用量和养护温度对EGC拉伸性能的影响[J]. 建筑材料学报, 2022, 25(4):401‑407. [百度学术]
WAN Xiaomei, LIU Jie, ZHU Yaguang, et al. Influence of fly ash content and curing temperature on tensile performance of engineering geopolymer composites[J]. Journal of Building Materials, 2022, 25(4):401‑407.(in Chinese) [百度学术]
NEMATOLLAHI B, SANJAYAN J, QIU J S, et al. High ductile behavior of a polyethylene fiber‑reinforced one‑part geopolymer composite:A micromechanics‑based investigation [J]. Archives of Civil and Mechanical Engineering, 2017, 17(3):555‑563. [百度学术]
JSCE. Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC) [S]. Tokyo:Japan Society of Civil Engineers, 2008. [百度学术]
PAN B, QIAN K, XIE H M, et al. Two‑dimensional digital image correlation for in‑plane displacement and strain measurement:A review[J]. Measurement Science and Technology, 2009, 20:062001. [百度学术]
于海洋, 李地红, 代函函, 等. 混杂纤维增强应变硬化水泥基复合材料的弯曲性能研究[J]. 材料导报, 2020, 34(增刊1):229‑233. [百度学术]
YU Haiyang, LI Dihong, DAI Hanhan, et al. Study on bending properties of hybrid fiber reinforced strain hardening cementitious composites[J]. Materials Report, 2020, 34(Suppl 1):229‑233. (in Chinese) [百度学术]
BAI R, LIU S G, YAN C W, et al. Flexural cracking performance of strain‑hardening cementitious composites with polyvinyl alcohol:Experimental and analytical study[J]. Construction and Building Materials, 2020, 247:118110. [百度学术]
LI V C, WU C, WANG S X, et al. Interface tailoring for strain hardening PVA‑ECC[J]. ACI Materials Journal, 2002, 99 (5):463‑472. [百度学术]