通过响应面法的 Box‑behnken 试验设计方法构建二次多项式回归方程,对氯乙烯、乙烯和乙烯醚三元聚合物砂浆配合比进行优化,并结合宏观性能与微观形貌进行机理分析.结果表明:所建模型在试验范围内能较准确地预测结果,响应面法用于三元聚合物砂浆配合比优化具有准确性与科学性;对28 d抗压强度影响强弱顺序依次为水灰比、减水剂掺量、聚合物掺量;对28 d 抗折强度和黏结强度影响强弱顺序为聚合物掺量、水灰比、减水剂掺量;将28 d 黏结强度最大值、抗折强度最大值和抗压强度最小值(折压比最大)作为目标优化值,得出三元聚合物砂浆的最优配合比为:聚合物掺量为12%,水灰比为0.42,减水剂掺量为1.12%.
Table 3Test values and predicted values of mechanical properties of ternary polymer mortar specimens
Specimen
Factor
Compressive strength/
MPa
Flexural strength/
MPa
Bonding strength/
MPa
wP/%
mW/mC
wWR/%
Test
Predicted
Test
Predicted
Test
Predicted
1
12
0.40
1.80
35.88
36.05
10.43
10.77
2.72
2.71
2
10
0.40
1.30
37.86
34.96
12.33
12.75
2.80
2.45
3
12
0.40
0.80
34.56
34.56
11.26
11.26
2.68
2.62
4
10
0.40
1.30
37.86
37.53
12.66
12.75
2.77
2.45
5
10
0.45
1.80
35.54
35.74
11.70
11.38
1.86
1.77
6
10
0.35
0.80
36.14
37.66
10.98
11.30
1.57
1.66
7
8
0.35
1.30
35.21
35.57
10.35
10.37
1.62
1.52
8
10
0.40
1.30
37.86
37.53
13.33
12.75
2.19
2.45
9
10
0.40
1.30
37.86
37.53
12.65
12.75
2.18
2.45
10
12
0.35
1.30
34.76
34.96
12.01
11.69
2.59
2.57
11
10
0.35
1.80
36.28
36.91
11.22
11.20
1.68
1.71
12
8
0.45
1.30
33.96
33.76
10.42
10.74
1.76
1.78
13
10
0.40
1.30
37.86
37.53
12.77
12.75
2.29
2.45
14
8
0.40
0.80
35.43
35.26
10.09
9.75
1.80
1.81
15
8
0.40
1.80
34.86
34.86
9.86
9.86
1.65
1.71
16
12
0.45
1.30
35.23
34.86
11.88
11.86
2.45
2.55
17
10
0.45
0.80
34.79
35.16
11.65
11.67
1.87
1.84
利用Design‑Expert软件对抗压强度试验值和3个自变量因素之间的关系进行多种拟合模型的综合分析,如线性(linear)模型、双因素(2FI)模型、二次多项式(quadratic)模型和三次多项式(cubic)模型.然后输出各模型的概率(P)值、失拟P值、相关系数(R2)校正值和R2预测值,其分析结果如表4所示.在统计分析中,假设检验(sequential)分析、失拟检验(lack of fit)分析的显著性用P表示.一般认为,P<0.01为非常显著,0.01≤P≤0.05为显著,P>0.05为不显著.由表4可知:抗压强度模型中二次多项式模型P值最小且为非常显著,其失拟检验分析的P值最大,R2校正值和R2预测值都较大.
表4抗压强度多种模型综合分析结果
Table 4Comprehensive analysis results of compressive strength by various models
SHAKER F A, EI‑DIEB A S, REDA M M. Durability of styrene‑butadiene latex modified concrete[J]. Cement and Concrete Research, 1997, 27(5): 711‑720.
[百度学术]
2
VINCKEA E, WANSEELE E V, MONTENY J, et al. Influence of polymer addition on biogenic sulfuric acid attack of concrete[J]. International Biodeterioration and Biodegradation, 2002, 49(4): 283‑292.
[百度学术]
3
GORNINSKI J P, DAL MOLIN D C, KAZMIERCZAK C S. Study of the modulus of elasticity of polymer concrete compounds and comparative assessment of polymer concrete and Portland cement concrete[J]. Cement and Concrete Research, 2004, 34(11): 2091‑2095.
[百度学术]
ZHENG Dafeng, CHEN Ran, LI Xiaokang. Effect of lignin based amphiphilic polymer GCL1‑J on structure and properties of mortar[J]. Journal of Chemical Engineering, 2016, 30(2): 484‑490. (in Chinese)
[百度学术]
CHEN Weideng, HAN Dongdong, ZHONG Shiyun. Effect of styrene butadiene emulsion and UHMWPE fiber on the flexural properties of mortar[J]. New Building Materials, 2017(2):94‑98.(in Chinese)
[百度学术]
CHEN Lingyan, HAN Fangfang, ZHOU Lina, et al. Study on properties of modified PVDF mortar[J]. New Building Materials, 2017(8): 50‑53. (in Chinese)
[百度学术]
HUANG Zhanwei, CHEN Wei, LI Qiu, et al. Mechanical properties and microstructure of cement mortar modified by waterborne epoxy resin[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(8): 2530‑2535. (in Chinese)
[百度学术]
JI Tao. Properties of PTB emulsion and its application in thermal insulation engineering[J]. Wall Materials Innovation and Energy Saving in Buildings, 2008(1) : 53‑56.(in Chinese)
[百度学术]
YAN Fei. Characteristics of PTB emulsion and its application in inorganic reinforcement adhesive[J]. Fujian Architecture and Construction, 2008(3): 23‑25.(in Chinese)
[百度学术]
XU Xianghong, HE Mingzhu. Experimental design and application of Design‑Expert and SPSS[M]. Beijing: Science Press, 2010:31‑35. (in Chinese)
[百度学术]
12
AYDIN S. A ternary optimisation of mineral additives of alkali activated cement mortars[J]. Construction and Building Materials, 2013, 43: 131‑138.
[百度学术]
13
BAYRAMOV F, TAŞDEMIR C, TAŞDEMIR M A. Optimization of steel fiber reinforced concretes by means of statistical response surface method[J]. Cement and Concrete Composites, 2004, 26(6): 665‑675.
[百度学术]
14
CHO T. Prediction of cyclic freeze‑thaw damage in concrete structures based on response surface method[J]. Construction and Building Materials, 2007, 21(12): 2031‑2040.
[百度学术]
YANG Xinwei. Study on pavement performance and pavement structure of polypropylene fiber high performance concrete[D]. Baoding:Hebei University of Technology, 2016.(in Chinese)
[百度学术]
HE Xiongfei, HUANG Wei, ZHANG Hao, et al. Optimization of preparation scheme of cement‑based permeable crystalline waterproof material with comprehensive impermeability and self‑healing performance based on response surface methodology[J]. Chemical Mineral and Processing,2021,50(3):31‑35. (in Chinese)
[百度学术]
CHEN Dongdong, WANG Xinpeng, HOU Dongshuai, et al. Design and research of rapid repair material based on response surface method[J]. Journal of Qingdao University of Technology, 2020, 41(5): 96‑103. (in Chinese)
[百度学术]