摘要
基于二维错配度理论,针对以NbC为基底的相对形核相γ‑Fe、α‑Fe进行错配度计算.利用扫描电镜(SEM)、透射电镜(TEM)、金相显微镜(OM)、动态热模拟相变仪,以及力学性能测试,研究了含Nb微合金钢的析出强化、细晶强化、控冷效果、显微组织及力学性能.结果表明:α‑Fe与NbC异质形核的效果较好,γ‑Fe与NbC异质形核的效果不理想;在连续冷却过程中,珠光体的临界冷却速率为1.5 ℃/s,贝氏体的临界冷却速率为5.0 ℃/s;含Nb的HRB500钢筋通过合适的控冷工艺可以有效细化晶粒尺寸,提高微合金钢的力学性能.
钢筋是建筑的骨架结构,在建筑物中发挥主要作用,现代建筑和工程需要屈服强度更高的高强度钢筋.钢筋屈服强度提高的同时往往伴随塑性的降低,因此非常有必要研发既具有高强度又具有良好韧性的钢材,以满足安全可靠的要求.微合金高强度钢筋在房屋建筑和海洋工程中广泛使
研究表
鉴于HRB500钢中的形核相在高温相变前以γ‑Fe存在、相变后以α‑Fe存在,本文运用理论计算,对以NbC为基底的形核相γ‑Fe、α‑Fe进行错配度计算和分析,探讨NbC对HRB500钢筋凝固过程中异质形核的影响,同时研究Nb对HRB500钢筋组织的影响规律.
利用DIL805动态热模拟相变仪对

图1
Fig.1 Process diagram of continuous cooling transformation of

图2 拉伸试件尺寸
Fig.2 Dimension of standardized steel bar sample for tensile test (size:mm)
Bramfit
由于钢液在凝固过程中Nb与C的亲和力很大,所形成的高熔点NbC可能会成为异质形核的核心,因此本文将NbC作为基底,以γ‑Fe、α‑Fe为形核相来计算形核效率.NbC的(100)面分别与γ‑Fe(100)面、α‑Fe(100)面的晶体学匹配关系图如

图3 NbC的(100)面与γ‑Fe(100)面、α‑Fe(100)面的晶体学匹配关系图
Fig.3 Parallel time lattice mismatch degree diagram of (100)NbC vs(100) γ‑Fe ,(100) α‑Fe
钢液凝固过程中NbC对γ‑Fe和α‑Fe异质形核作用有所不同.表

图4
Fig.4 CCT curves of

图5 不同冷却速率下
Fig.5 Micro morphology of
对冷却速率为0.3 ℃/s下显微组织为珠光体和铁素体的

图6 试验钢的显微组织形貌
Fig.6 Micro morphology of test steels

图7 试验钢中铁素体晶粒尺寸
Fig.7 Ferrite grain size of test steels
由此说明,在试验钢中添加Nb,可以进一步细化晶粒尺寸.这是因为Nb是强碳化物形成元素,对C有很强的吸附能力,使原本在晶界上析出的碳化物溶解,碳化物转变为NbC;奥氏体(A)中弥散的、稳定的NbC颗粒可以阻碍奥氏体晶粒长大,对晶界起到钉扎作用,从而阻碍晶界迁移和奥氏体再结晶,细化了奥氏体晶粒,同时在奥氏体变形过程中位错结构和晶内变形带很难恢复,因此铁素体很容易在晶界和晶粒内形核,铁素体和珠光体的形核点增加,试验钢的显微组织得以细化.
试验钢的力学性能指标列于
Note: fy—Yield strength; ft—Tensile strength; A—Elongation after fracture.

图8 试验钢的拉伸应力-应变曲线
Fig.8 Tensile stress‑strain curves of test steels
对

图9
Fig.9 TEM, SADP and EDS analysis of
NbC在高温时稳定性好,可以有效钉扎奥氏体晶界,形成的奥氏体晶粒尺寸更为细小,在1个奥氏体晶粒内可以形成数个珠光体.由于NbC钉扎作用所形成的奥氏体尺寸较小,在此基础上形成的珠光体团的尺寸和片层间距更为细小,因此在有效提高试验钢强度的同时,还能保持良好的塑性.
(1)根据二维错配度理论计算可知,NbC与α‑Fe的形核最为有效,与γ‑Fe的形核相对困难.通过错配度的计算可以预估Nb的碳化物与基体之间形核的有效性,提高其与α‑Fe的形核效率.
(2)当试验钢的组织为珠光体和铁素体时,Nb的添加可以使试验钢的微观组织明显细化,提高试验钢的屈服强度和抗拉强度,但塑性基本不变.
参考文献
CHENG X Y, ZHANG H X, LI H, et al. Effect of tempering temperature on the microstructure and mechanical properties in mooring chain steel[J]. Materials Science and Engineering A, 2015, 636(11):164‑171. [百度学术]
JANOVEC J, SVOBODA M, VYROSTKOVÁ A, et al. Time‑temperature‑precipitation diagrams of carbide evolution in low alloy steels[J]. Materials Science and Engineering A, 2005, 402(1/2):288‑293. [百度学术]
JANOVEC J, SVOBODA M, KROUPA A, et al. Thermal‑induced evolution of secondary phases in Cr‑Mo‑V low alloy steels[J]. Journal of Materials Science, 2006, 41(11):3425‑3433. [百度学术]
LI Y J, CHOI P, GOTO S. Evolution of strength and microstructure during annealing of heavily cold‑drawn 6.3 GPa hypereutectoid pearlitic steel wire[J]. Acta Materialia, 2012, 60(9):4005‑4016. [百度学术]
KARMAKER A, BISWAS S, MUKHERJEE S, et al. Effect of composition and thermo‑mechanical processing schedule on the microstructure, precipitation and strengthening of Nb‑microalloyed steel[J]. Materials Science and Engineering A, 2017, 690:158‑169. [百度学术]
DEY I, CHANDRA S, SAHA R, et al. Effect of Nb micro‑alloying on microstructure and properties of thermo‑mechanically processed high carbon pearlitic steel[J].Materials Characterization, 2018, 140:45‑54. [百度学术]
GAO G H, FENG C , BAI B Z. Effects of Nb on the microstructure and mechanical properties of water‑quenched fgba/bg steels[J]. Journal of Materials Engineering & Performance, 2012, 21(3):345‑352. [百度学术]
CHEN G A, YANG W Y,GUO S Z, et al. Effect of Nb on the transformation kinetics of low carbon (manganese) steel during deformation of undercooled austenite[J].International Journal of Minerals Metallurgy and Materials, 2006, 13(5):411‑415. [百度学术]
潘红波,汪杨,阎军,等. Nb含量及工艺对HRB600钢筋组织与性能的影响[J].建筑材料学报,2017,20 (3):392‑398. [百度学术]
PAN Hongbo, WANG Yang, YAN Jun, et al. Effects of Nb content and process on the structure and properties of HRB600 steel bars [J]. Journal of Building Materials, 2017, 20(3):392‑398.(in Chinese) [百度学术]
王鹏,李长荣,刘然,等.稀土夹杂物诱导钢中ε‑Cu析出的错配度计算[J].中国稀土学报,2018,36(3):314‑318. [百度学术]
WANG Peng, LI Changrong, LIU Ran, et al. Mismatch calculation of ε‑Cu precipitation in steel induced by rare earth inclusions[J]. Journal of the Chinese Society of Rare Earths, 2018, 36(3):314‑318. (in Chinese) [百度学术]
LV Y, SHENG G, HUANG Z. High strain and low cycle fatigue behaviors of rebars produced by qst and V‑N microalloying technology[J]. Construction and Building Materials, 2013, 48(19):67‑73. [百度学术]
BRAMFITT B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron[J]. Metallurgical & Materials Transactions B, 1970, 1(7):1987‑1995. [百度学术]
李长荣,张凤珊,张迁,等.钢中第二相诱导铜元素析出的晶体学分析[J].钢铁研究学报,2016,28(3):63‑66. [百度学术]
LI Changrong, ZHANG Fengshan, ZHANG Qian, et al. Crystallographic analysis of secondary phase induced copper precipitation in steel[J]. Journal of Iron and Steel Research, 2016, 28(3):63‑66. (in Chinese) [百度学术]
VERVYNCKT S, VERBEKEN K, THIBAUX P, et al. Recrystallization‑precipitation interaction during austenite hot deformation of a Nb microalloyed steel[J]. Materials Science and Engineering A, 2011, 528(16/17):5519‑5528. [百度学术]
ABAD R, FERNÁNDEZ AI, LÓPEZ B, et al. Interaction between recrystallization and precipitation during multipass rolling in a low carbon niobium microalloyed steel[J].ISIJ International, 2001, 41(11):1373‑1382. [百度学术]
FANG F, YONG Q L, YANG C F, et al. A model for precipitation kinetics in vanadium microalloyed steel[J]. Journal of Iron and Steel Research International, 2010, 17(2):36‑42. [百度学术]