摘要
研究了矿渣粉掺量对钢纤维自密实混凝土(SFRSCC)工作性能和力学性能的影响,并从微观层面阐释钢纤维和矿渣粉对混凝土基体的增强作用.结果表明:采用10%掺量的矿渣粉代替水泥能有效提高新拌混凝土的工作性能,增加钢纤维体积分数会减弱自密实混凝土的工作性能;矿渣粉与钢纤维的协同作用能够显著提高混凝土的抗压强度、劈裂抗拉强度和抗折强度;采用矿渣粉替代水泥有助于生成更致密的微观结构.
与普通混凝土相比,自密实混凝土 (SCC)的制备要消耗更多的粉体材料.为了满足混凝土的自密实要求,通常需要使用500~600 kg/
SCC与普通混凝土相似,具有抗拉强度低的缺点,而纤维能显著限制混凝土微裂缝的形成与发
目前,关于同时将矿物掺和料及纤维纳入影响因素的研究仍旧较少.因此,本文以矿渣粉掺量和钢纤维体积分数作为变量,通过开展工作性能、力学性能和微观结构分析等试验,研究矿渣粉对钢纤维自密实混凝土(SFRSCC)性能的影响,从而为含有矿物掺和料SFRSCC的研究和实际应用提供数据参考.
水泥(C)为大同冀东水泥有限公司生产的P·O 42.5 普通硅酸盐水泥,表观密度为3 150 kg/
为了体现矿渣粉对SCC性能的影响和防止SCC发生离

图1 SFRSCC的拌制流程
Fig.1 Mix procedure of SFRSCC
根据JGJ/T 283-2012《自密实混凝土应用技术规程》的规定,分别用Abram型坍落度桶、V型漏斗和L型箱测试SFRSCC的工作性能. 在测试过程中,记录SFRSCC停止流动时的坍落扩展度D,用于表征SFRSCC 的流动性;记录SFRSCC扩展度达到500 mm时所需的坍落流动时间T500和全部穿过V型漏斗的流动时间Tv,用于表征SFRSCC的黏聚性;测量并计算L型箱的两末端混凝土的高度比H2/H1,用于表征SFRSCC混合物的间隙穿过能力.
根据GB/T 50081-2002《普通混凝土力学性能试验方法标准》,分别用100 mm100 mm100 mm、150 mm150 mm150 mm和100 mm100 mm
400 mm的试件测试混凝土的抗压强度、劈裂抗拉强度和抗折强度.
SFRSCC的坍落扩展度见

图2 SFRSCC的坍落扩展度
Fig.2 Slump flow diameter of SFRSCC
SFRSCC的坍落流动时间和V型漏斗流动时间见

图3 SFRSCC的坍落流动时间和V型漏斗流动时间
Fig.3 T500 and Tv of SFRSCC
SFRSCC的L型箱两末端混凝土的高度比(H2/H1)见

图4 SFRSCC的L型箱两末端混凝土的高度比
Fig.4 H2/H1 of concrete at two ends of L‑box of SFRSCC
SFRSCC的抗压强度见

图5 SFRSCC的抗压强度
Fig.5 Compressive strength of SFRSCC
由
SFRSCC的28 d劈裂抗拉强度和抗折强度见

图6 SFRSCC的28 d劈裂抗拉强度和抗折强度
Fig.6 Splitting tensile strength and flexural strength of SFRSCC at 28 d
28 d龄期时,钢纤维从F0.9S0和F0.9S30试件中拔出后的SEM照片见

图7 钢纤维从F0.9S0和F0.9S30试件中拔出后的SEM照片
Fig.7 SEM images of steel fiber pulled out from F0.9S0 and F0.9S30 specimens
F0.9S0和F0.9S30中附着在钢纤维表面基体的SEM照片和EDS分析见

图8 F0.9S0中附着在钢纤维表面基体的SEM照片和EDS分析
Fig.8 SEM images and EDS analysis of matrix attached to the surface of steel fiber in F0.9S0

图9 F0.9S30中附着在钢纤维表面基体的SEM照片和EDS分析
Fig.9 SEM images and EDS analysis of matrix attached to the surface of steel fiber in F0.9S30
(1)采用10%掺量的矿渣粉替代水泥可以有效提高自密实混凝土(SCC)的工作性能,增加钢纤维体积分数会显著降低SCC的工作性能.
(2)采用矿渣粉替代水泥和添加端钩钢纤维能有效提升SCC的抗压强度、劈裂抗拉强度和抗折强度.与对照组(未添加矿渣粉和钢纤维)相比,矿渣粉掺量为30%、钢纤维体积分数为0.9%的钢纤维自密实混凝土的抗压强度、劈裂抗拉强度和抗折强度分别提高了31.2%、52.4%和136.4%.
(3)钢纤维表面附着的水化物有助于提升纤维与基体之间的黏结性能;适量矿渣粉替代水泥能够生成更多的水化硅酸钙凝胶,形成更致密的微观结构,从而提升钢纤维自密实混凝土的力学性能.此外,具有较低的铝硅比和钙硅比的SCC表现出更高的强度.
参考文献
FERRARIS C F, BROWER L, DACZKO J, et al. Workability of self‑compacting concrete[C]// Proceedings of the Economical Solution for Durable Bridges and Transportation Structures, International Symposium on High Performance Concrete. Florida: Orlando, 2000:398‑407. [百度学术]
姚大立,迟金龙,余芳,等. 粉煤灰与再生骨料对自密实再生混凝土的影响[J]. 沈阳工业大学学报, 2020, 42(2):236‑240. [百度学术]
YAO Dali, CHI Jinlong, YU Fang, et al. Influence of fly ash and recycled aggregate on self‑compacting recycled aggregate concrete[J]. Journal of Shenyang University of Technology, 2020, 42(2):236‑240. (in Chinese) [百度学术]
BOUKENDAKDJI O,KENAI S, KADRI E H,et al. Effect of blast furnace slag on the rheology of fresh self‑compacted concrete[J]. Construction and Building Materials,2009,23:2593‑2598. [百度学术]
SALEHI H,MAZLOOM M. Opposite effects of ground granulated blast‑furnace blast furnace slag and silica fume on the fracture behavior of self‑compacting lightweight concrete[J]. Construction and Building Materials,2019,222:622‑632. [百度学术]
BOUKENDAKDJI O,KADRI E H,KENAI S. Effects of granulated blast furnace blast furnace slag and superplasticizer type on the fresh properties and compressive strength of self‑compacting concrete[J]. Cement and Concrete Composites, 2012, 34:583‑590. [百度学术]
ZHAO Y, BI J H, HUO L Y, et al. Development of a coupled numerical framework of steel fiber reinforced self‑compacting concrete[J]. Construction and Building Materials, 2021, 303:124582. [百度学术]
ATHIYAMAAN V,GANESH G M. Experimental, statistical and simulation analysis on impact of micro steel‑fibres in reinforced SCC containing admixtures[J]. Construction and Building Materials, 2020, 246:118450. [百度学术]
HUO L Y, BI J H, ZHAO Y, et al. Modified the smeared crack constitutive model of fiber reinforced concrete under uniaxial loading[J]. Construction and Building Materials, 2020, 250:118916. [百度学术]
BARROS J A O, SALEHIAN H. Assessment of the performance of steel fibre reinforced self‑compacting concrete in elevated slabs[J]. Cement and Concrete Composites, 2015, 55:268‑280. [百度学术]
吴涛,杨雪,刘喜. 钢‑聚丙烯混杂纤维自密实轻骨料混凝土性能研究[J]. 建筑材料学报, 2020, 24(2):268‑275, 282. [百度学术]
WU Tao,YANG Xue,LIU Xi. Investigation on properties of self‑compacting lightweight concrete reinforced with hybrid steel and polypropylene fibers[J]. Journal of Building Materials, 2020, 24(2):268‑275, 282. (in Chinese) [百度学术]
MASTALI M, DALVAND A. Use of silica fume and recycled steel fibers in self‑compacting concrete (SCC)[J]. Construction and Building Materials, 2016, 125:96‑209. [百度学术]
NAZARI A, RIAHI S. The role of SiO2 nanoparticles and ground granulated blast furnace blast furnace slag admixtures on physical, thermal and mechanical properties of self‑compacting concrete[J]. Materials Science and Engineering:A, 2011, 528(4‑5):2149‑2157. [百度学术]
LERCH J O, BESTER H L, ROOYEN A S V, et al. The effect of mixing on the performance of macro synthetic fiber reinforced concrete[J]. Cement and Concrete Research, 2018, 103:130‑139. [百度学术]
DADSETAN S, BAI J P. Mechanical and microstructural properties of self‑compacting concrete blended with metakaolin, ground granulated blast‑furnace blast furnace slag and fly ash[J]. Construction and Building Materials, 2017, 146:658‑667. [百度学术]
DUAN P, YAN C J, ZHOU W. Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle[J]. Cement and Concrete Composite, 2017, 54:108‑119. [百度学术]