摘要
研究了以普通硅酸盐水泥(OPC)-矿渣微粉(GBFS)-硫酸钠(NS)体系制备的土体硬化剂对普通地表土壤和海滩淤泥这2种土壤的固化效果及其固化机理.研究表明,OPC‑GBFS‑NS土体硬化剂对2种土壤均具有良好的固化效果,使得固化土具有较高的无侧限抗压强度,对土壤中重金属离子C
通过向土壤中添加土体硬化剂(也称土壤固化剂),使得土壤固化后具备某些特殊工程性能,是土壤固化处理常用技术之一.土体硬化剂可分为有机类和无机类2种.无机类土体硬化剂由于可针对不同类型土壤进行固化处理而被广泛应用于地下基础、公路工程以及水利工程等领
传统的无机类土体硬化剂常为水泥或石灰等材料.然而,为实现固体废弃物资源化利用及降低温室气体排放,利用固体废弃物替代部分水泥来制备土体硬化剂已成为新趋
P·O 42.5普通硅酸盐水泥(OPC),安徽海螺水泥有限公司生产,其物理性能如
OPC‑GBFS‑NS体系土体硬化剂的配合比如
用万能试验机静压成型50 mm×50 mm的圆柱形固化土试件,脱模后放入(20±1) ℃、相对湿度95%的标准养护箱中分别养护6 d和27 d,再移入(20±1) ℃恒温水浴箱中养护1 d;参照JTG E51—2009《公路工程无机结合料稳定材料试验规程》测试固化土的7、28 d无侧限抗压强度.
由于重金属离子含量高的土壤不易获取,故通过向普通地表土壤中添加重金属离子来配制重金属离子含量不同的土壤,以模拟重金属离子污染土壤.重金属离子选用最为常见的C
参照HJ/T 299—2007《固体废物 浸出毒性浸出方法 硫酸硝酸法》对上述土壤进行C
样品准备:将固化土置于无水乙醇中浸泡7 d以终止水泥水化,期间更换3次无水乙醇;浸泡7 d后取出,放到40 ℃真空烘箱中烘干48 h;用研钵将其研磨至80 μm以下.将所得样品放在1.0×1
采用日本Rigaku公司制造的D/max 2 550 VB3+/PC 型X射线粉末多晶衍射仪进行样品的 XRD分析.工作电压设定为40 kV,工作电流为250 mA,DS为0.5°,RS为0.15 mm,铜靶Kα射线.采用连续扫描模式,2θ 扫描范围为5°~70°,扫描速率为2 (°)/min.
采用德国NETZSCH公司制造的STA449C型综合热分析仪进行样品的TG‑DSC分析.N2为保护气氛,加热速率为 10 ℃/min,温度范围为30~800 ℃.
2种土体硬化剂分别与普通地表土壤和海滩淤泥进行复配,测试得到的固化土无侧限抗压强度如

图1 土体硬化剂用于不同类型土壤后的固化土无侧限抗压强度
Fig.1 Unconfined compressive strength of solidified soils by soil stabilizer
选用普通地表土壤配制3种C
图

图2 土体硬化剂PS8硬化浆体和普通地表土壤及其固化土的XRD图谱
Fig.2 XRD patterns of PS8 hardened paste, commonsurface soil (CS) and stabilized commonsurface soil by PS8 (SCS)

图3 土体硬化剂PS8硬化浆体和海滩淤泥及其固化 土的XRD图谱
Fig.3 XRD patterns of PS8 hardened paste, seaside silt (BS) and stabilized seaside silt by PS8 (SBS)
养护28 d后,土体硬化剂PS8硬化浆体、普通地表土壤和海滩淤泥及其经PS8固化处理后的固化土TG‑DSC测试结果见图

图4 土体硬化剂PS8硬化浆体和普通地表土壤及其 固化土的TG‑DSC曲线
Fig.4 TG‑DSC curves of PS8 hardened paste, commonsurface soil (CS) and stabilized commonsurface soil by PS8 (SCS)

图5 土体硬化剂PS8硬化浆体和海滩淤泥及其固化土的TG‑DSC曲线
Fig.5 TG‑DSC curves of PS8 hardened paste, seaside silt (BS) and stabilized seaside silt by PS8 (SBS)
由
由
普通地表土壤和海滩淤泥的微观形貌见图

图6 普通地表土壤的微观形貌
Fig.6 Morphologies of common surface soil

图7 海滩淤泥的微观形貌
Fig.7 Morphologies of seaside silt

图8 普通地表土壤固化土SCS的微观形貌
Fig.8 Morphologies of stabilized common surface soil by PS8 (SCS)

图9 海滩淤泥固化土SBS的微观形貌
Fig.9 Morphologies of stabilized seaside silt by PS8 (SBS)
OPC‑GBFS‑NS体系土体硬化剂对普通地表土壤和海滩淤泥均具有良好的固化效果,使得这2种固化土具有较高的无侧限抗压强度.OPC‑GBFS‑NS体系土体硬化剂对土壤中重金属离子C
参考文献
周海龙, 申向东. 土壤固化剂的应用研究现状与展望[J]. 材料导报, 2014, 28(9):134‑138. [百度学术]
ZHOU Hailong, SHEN Xiangdong. Application research situation and prospect of soil stabilizer [J]. Materials Reports, 2014, 28(9):134‑138.(in Chinese) [百度学术]
IKEAGWUANI C, NWONU D. Emerging trends in expansive soil stabilisation:A review [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(2):423‑440. [百度学术]
PARK J, BATCHELOR B. General chemical equilibrium model for stabilized/solidified wastes [J]. Journal of Environmental Engineering, 2002, 128(7):653‑661. [百度学术]
YIN C, SHAABAN M, MAHMUD H. Chemical stabilization of scrap metal yard contaminated soil using ordinary Portland cement:Strength and leachability aspects [J]. Building and Environment, 2007, 42(2):794‑802. [百度学术]
MOON D, LEE J, GRUBB D, et al. An assessment of Portland cement, cement kiln dust and class C fly ash for the immobilization of Zn in contaminated soils [J]. Environmental Earth Sciences, 2010, 61(8):1745‑1750. [百度学术]
BAO J, WANG L, XIAO M. Changes in speciation and leaching behaviors of heavy metals in dredged sediment solidified/stabilized with various materials [J]. Environmental Science and Pollution Research, 2016, 23(9):8294‑8301. [百度学术]
PEETHAMPARAN S, OLEK J, LOVELL J. Influence of chemical and physical characteristics of cement kiln dusts (CKDs) on their hydration behavior and potential suitability for soil stabilization [J]. Cement and Concrete Research, 2008, 38(6):803‑815. [百度学术]
WANG L, KWOK J, TSANG D, et al. Mixture design and treatment methods for recycling contaminated sediment [J]. Journal of Hazardous Materials, 2015, 283:623‑632. [百度学术]
ROSA M, CETIN B, EDIL T, et al. Freeze‑thaw performance of fly ash‑stabilized materials and recycled pavement materials [J]. Journal of Materials in Civil Engineering, 2017, 29(6):04017015. [百度学术]
AL‑HOMIDY A, DAHIM M, ABD E A A. Improvement of geotechnical properties of sabkha soil utilizing cement kiln dust [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(4):749‑760. [百度学术]
CERBO A, BALLESTEROS F, CHEN T, et al. Solidification/stabilization of fly ash from city refuse incinerator facility and heavy metal sludge with cement additives [J]. Environmental Science and Pollution Research, 2017, 24(2):1748‑1756. [百度学术]
SHARMA A, SIVAPULLAIAH P. Ground granulated blast furnace slag amended fly ash as an expansive soil stabilizer [J]. Soils and Foundations, 2016, 56(2):205‑212. [百度学术]
DINIZ D, DE CARVALHO J, MENDES J, et al. Blast oxygen furnace slag as chemical soil stabilizer for use in roads [J]. Journal of Materials in Civil Engineering, 2017, 29(9):04017118. [百度学术]
张海旭, 张国防, 王博, 等. 土壤固化用特种砂浆的物理力学性能研究[J]. 新型建筑材料, 2020, 47(7):1‑3. [百度学术]
ZHANG Haixu, ZHANG Guofang, WANG Bo, et al. Study on physical and mechanical properties of cement mortar special for soil solidification [J]. New Building Materials, 2020, 47(7):1‑3. (in Chinese) [百度学术]
刘世皎, 樊恒辉, 史祥, 等. BCS土壤固化剂固化土的耐久性研究[J]. 西北农林科技大学学报(自然科学版), 2014, 42(12):214‑220. [百度学术]
LIU Shijiao, FAN Henghui, SHI Xiang, et al. Durability of stabilized soil by BCS [J]. Journal of Northwest A&F University (Natural Science), 2014, 42(12):214‑220. (in Chinese) [百度学术]