摘要
采用线性极化法和电化学交流阻抗谱法,分析了不同电压下珊瑚骨料混凝土中钢筋腐蚀电位和腐蚀电流的时变性;测试了珊瑚骨料混凝土和普通混凝土的电阻率和孔隙率,研究了2种混凝土的临界氯离子浓度.结果表明:在相同电压下,珊瑚骨料混凝土腐蚀电位的稳定期和腐蚀电流的平稳期较普通混凝土短;珊瑚骨料混凝土的临界氯离子浓度小于普通混凝土.
海工混凝土是海洋工程发展的基础.多数岛礁都远离陆地,岛上建筑材料和淡水资源极其有限.若岛礁建设采用普通混凝土,不仅运输困难、成本高,而且对岛上环境有一定的污染,这在很大程度上制约了岛礁的开发和建设.研究表
钢筋锈蚀将给国家基础建设带来巨额经济损失和巨大的安全隐
本文采用线性极化法(LPR)和电化学交流阻抗谱法(EIS),对不同电压下珊瑚骨料混凝土中的钢筋锈蚀情况进行了监测,深入分析了电压值对珊瑚骨料混凝土中钢筋的锈蚀速率以及腐蚀电位的影响;测试了珊瑚骨料混凝土和普通混凝土的电阻率以及孔隙率;采用扫描电子显微镜(SEM)观察了钢筋锈蚀/未锈蚀交界处的表面形貌;探讨了钢筋锈蚀临界点的判断方法,得到了珊瑚骨料混凝土的临界氯离子浓度(质量分数,文中涉及的浓度、减水率等除特别说明外均为质量分数),为珊瑚骨料混凝土结构耐久性设计及寿命预测提供了试验参数.
胶凝材料为P·O42.5普通硅酸盐水泥、Ⅱ级原状粉煤灰,其化学组成和物理性能如表

图1 珊瑚骨料
Fig.1 Coral aggregate
将HRB400级10 mm钢筋打磨光亮,用丙酮去脂,在其一端连接500 mm 导线,并用环氧和直径12 mm的热缩管密封钢筋端部,把暴露的钢筋(长为20 mm,暴露面积6.28 c
基于自然浸泡法、内掺氯盐加速法和阳极通电加速法的不足,考虑到电迁移法在混凝土中氯离子扩散系数的测试以及迁移型阻锈剂的渗透研究已经得到广泛应用,探索使用电迁移法来加速氯离子在混凝土保护层中的传输过程,并结合电化学方法来研究混凝土中钢筋的锈蚀行为.

图2 电迁移氯离子加速钢筋锈蚀试验装置
Fig.2 Electro‑migration chloride ion device for accelerating corrosion of steel bar
试验过程考虑了外加电场的影响.在初始时刻,混凝土中的钢筋处于钝化状态,即处于

图3 金属阳极极化曲线
Fig.3 Metal anodic polarization curve
根据上面的分析,如果采用电场加速测试得到的临界氯离子浓度代表实际工作条件下的临界氯离子浓度,有必要确保钢筋的极化势小于Etr,防止氧化还原反应的发生.为了进一步研究外加电场电压对钝化膜的影响,Xu
如

图4 钢筋锈蚀电流密度测定
Fig.4 Determination of corrosion current density of steel bars

图5 钢筋的腐蚀电位
Fig.5 Corrosion potential of reinforcement
普通混凝土在外加电场作用下存在钢筋电压值的“稳定期”:在0.6 V电压作用下存在28 d的“稳定期”,1.0 V电压作用下存在21 d的“稳定期”,2.0、3.0 V电压作用下存在7 d的“稳定期”.但是,珊瑚骨料混凝土腐蚀电压的“平稳期”较短,珊瑚骨料混凝土内部的氯离子在电场作用下移动到钢筋表面,参与钢筋锈蚀反应.在初始阶段,普通混凝土电压值持续下降,直至钢筋钝化膜被破坏,定义此段时间为腐蚀电压“下降期”.相对于珊瑚骨料混凝土,普通混凝土电压“下降期”持续时间较长.在电场作用下,氯离子在钢筋表面持续聚集,参加钢筋锈蚀反应,直至钢筋钝化膜破坏.钢筋钝化膜破坏后,腐蚀电压存在“骤减期”,普通混凝土的电压值在短时间内下降较快,珊瑚骨料混凝土腐蚀电压值“骤减期”和“下降期”变化不大.
综上所述,珊瑚骨料混凝土内的钢筋可以形成完整的钝化膜,对钢筋起到保护的作用.珊瑚骨料混凝土腐蚀电位“稳定期”较短,“下降期”和“骤减期”相差不大.普通混凝土存在明显的腐蚀电位“稳定期”,“下降期”长且斜率小.珊瑚骨料混凝土的开始锈蚀时间小于普通混凝土.
腐蚀电位的测试受多种因素的影响,如混凝土保护层电阻率、混凝土内的氧气含量及相对湿度等.故腐蚀电位只是表述钢筋锈蚀的定性指标,只有腐蚀电流密度icorr能定量表征钢筋的腐蚀程度,因此采用LPR测试钢筋的极化电阻(Rp),通过法拉第定律求得相应的腐蚀电流密度(icorr),如
(1) |
式中:B为Stern‑Geary 常数,根据文献[

图6 钢筋的极化电阻值
Fig.6 Polarization resistance of steel bar

图7 钢筋的腐蚀电流密度值
Fig.7 Corrosion current density of steel bar
2种混凝土开始锈蚀阶段的腐蚀电流密度值变化存在电流持续平稳阶段(“平稳期”),腐蚀电流密度值持续上升阶段(“上升期”).钢筋钝化膜发生破裂后,普通混凝土中钢筋的腐蚀电流密度值持续增加,但不同电压值作用下数值趋于0.15 μA/c

图8 钢筋开始锈蚀时极化曲线
Fig.8 Polarization curve of steel bar at the beginning of corrosion
为了准确地反映钢筋的腐蚀过程,可以通过

图9 EIS等效电路图
Fig.9 Equivalent circuit diagram of EIS
钢筋开始腐蚀时的Nyquist图如

图10 钢筋开始锈蚀时Nyquist图
Fig.10 Nyquist diagram when steel bars begin to rust
当判断珊瑚骨料混凝土中钢筋开始锈蚀时,首先将试件置于压力试验机上顺筋劈开,观察钢筋表面的锈蚀状况,并采用SEM对钢筋表面的锈蚀/未锈蚀交界处进行观察,如

图11 钢筋的腐蚀形貌
Fig.11 Corrosion morphology of steel bar
确定混凝土中钢筋开始锈蚀以后,测定临界氯离子浓度.由于珊瑚骨料中氯离子含量较高,改变以往逐层磨粉取值的方法,在钢筋靠近保护层一侧的上沿处沿平行于试件上表面方向淋水并切割出厚度为4 mm的混凝土切片.采用研钵将切片初步磨碎,仔细去除其中的粗细骨料,再用自动研磨机将砂浆研磨至粒径小于1.5 mm大小的粉末.采用氯离子选择电极法测定粉末样品中游离氯离子的含量.最终得到普通混凝土的临界氯离子浓度为0.54%(以胶凝材料质量计),而珊瑚骨料混凝土的临界氯离子浓度为0.41%(以胶凝材料质量计),同时n(C
(1)通过改进阳极通电加速法,提出了电场加速下氯离子的快速测定方法.采用不同电压值模拟了氯离子在海洋环境中的扩散过程.
(2)珊瑚骨料混凝土腐蚀电位的稳定期和腐蚀电流的平稳期较普通混凝土短.
(3)普通混凝土和珊瑚骨料混凝土试样的饱水电阻率分别为10.84、5.87 kΩ·cm,电阻率比为1.85,珊瑚骨料混凝土的电阻率较小.由于珊瑚骨料混凝土中存在氯离子,且电阻率均低于普通混凝土,珊瑚骨料混凝土中钢筋的腐蚀速度更快.
(4)普通混凝土的临界氯离子浓度为0.54%,而珊瑚骨料混凝土的临界氯离子浓度为0.41%,其临界氯离子浓度小于普通混凝土.
参考文献
苏丽,牛荻涛,罗扬,等. 粉煤灰珊瑚骨料混凝土内掺氯离子扩散和吸水性能研究[J]. 建筑材料学报, 2021, 24(1): 77‑86. [百度学术]
SU Li, NIU Ditao, LUO Yang, et al. Research on the inner chloride diffusion and capillary water absorption properties of fly ash coral aggregate concrete[J]. Journal of Building Materials, 2021, 24(1): 77‑86. (in Chinese). [百度学术]
LIU J, OU Z, WEI P, et al. Literature review of coral concrete[J]. Arabian Journal for Science and Engineering, 2017, 43(4): 1529‑1541. [百度学术]
DA B, YU H F, MA H Y, et al. Chloride diffusion study of coral concrete in a marine environment[J]. Construction and Building Materials, 2016, 123: 47‑58. [百度学术]
CHEN C Y, JI T, ZHUANG Y Z, et al. Workability, mechanical properties and affinity of artificial reef concrete[J]. Construction and Building Materials, 2015, 98(15): 227‑236. [百度学术]
DALE P B. Influence of internal curing using lightweight aggregates on interfacial transition zone percolation and chloride ingress in mortars[J]. Cement and Concrete Composites, 2009, 31(5): 285‑289. [百度学术]
WANG Q, LI P, TIAN Y, et al. Mechanical properties and microstructure of Portland cement concrete prepared with coral reef sand[J]. Journal of Wuhan University of Technology, 2016, 31(5): 996‑1001. [百度学术]
WU W J, WANG R, ZHU C Q, et al. The effect of fly ash and silica fume on mechanical properties and durability of coral aggregate concrete[J]. Construction and Building Materials, 2018, 185(10): 69‑78. [百度学术]
吴文娟,汪稔,朱长歧,等.珊瑚骨料混凝土动态压缩性能的试验研究[J].建筑材料学报.2019,22(1):7‑14. [百度学术]
WU Wenjuan, WANG Nian, ZHU Changqi, et al. Experimental study on dynamic compression performance of Coral aggregate concrete[J]. Journal of Building Materials, 2019, 22(1): 7‑14. (in Chinese) [百度学术]
POURSAEE A, HANSSON C M. Potential pitfalls in assessing chloride‑induced corrosion of steel in concrete[J]. Cement and Concrete Research, 2009, 39(5): 391‑400. [百度学术]
DARMAWAN H S. Pitting corrosion model for reinforced concrete structures in a chloride environment[J]. Magazine of Concrete Research, 2010, 62(2):91‑101. [百度学术]
WATTANACHAI P, OTSUKI N, SAITO T, et al. A study on chloride ion diffusivity of porous aggregate concretes and improvement method[J]. Proceedings of the Civil Society, 2009, 65(1): 30‑44. [百度学术]
DA B, YU H F, MA H Y, et al. Reinforcement corrosion research based on the linear polarization resistance method for coral aggregate seawater concrete in a marine environment[J]. Anti‑Corrosion Methods and Materials, 2018, 65(5): 458‑470. [百度学术]
KAKOOEI S, AKIL H M, DOLATI A, et al. The corrosion investigation of rebar embedded in the fibers reinforced concrete[J]. Construction and Building Materials, 2012, 35(10): 564‑570. [百度学术]
KAKOOEI S, AKIL H M, JAMSHIDI M, et al. The effects of polypropylene fibers on the properties of reinforced concrete structures[J]. Construction and Building Materials, 2012, 27(1): 73‑77. [百度学术]
王芳,查晓雄.钢管珊瑚混凝土试验和理论研究[J].建筑结构学报,2013,34(增刊1):288‑293. [百度学术]
WANG Fang, ZHA Xiaoxiong. Experimental and theoretical study on coral concrete filled steel tube[J]. Journal of Building Structures, 2013, 34(Suppl 1): 288‑293. (in Chinese) [百度学术]
吴彰钰,余红发,麻海燕,等.全珊瑚混凝土中钢筋锈蚀的氯离子阈值研究[J].建筑材料学报, 2020, 23(5): 1078‑1085. [百度学术]
WU Zhangyu, YU Hongfa, MA Haiyan, et al. Determination of the chloride threshold value in reinforced coral aggregate seawater concrete[J]. Journal of Building Materials, 2020, 23(5): 1078‑1085. (in Chinese) [百度学术]
CAO Y, GEHLEN C, ANGST U, et al. Critical chloride content in reinforced concrete‑An updated review considering Chinese experience[J]. Cement and Concrete Research, 2019, 117: 58‑68. [百度学术]
GULIKERS J. Considerations on the reliability of service life predictions using a probabilistic approach[J]. Journal De Physique Ⅳ, 2006, 136(1): 233‑241. [百度学术]
JANG B S, OH B H. Effects of non‑uniform corrosion on the cracking and service life of reinforced concrete structures[J]. Cement and Concrete Research, 2010, 40(9): 1441‑1450. [百度学术]
XU J, JIANG L, WANG J. Influence of detection methods on chloride threshold value for the corrosion of steel reinforcement[J]. Construction and Building Materials, 2009, 23(5): 1902‑1908. [百度学术]
MANERA M, VENNESLAND O, BERTOLINI L. Chloride threshold for rebar corrosion in concrete with addition of silica fume[J]. Corrosion Science, 2008, 50(2):554‑560. [百度学术]
LUCA B, MADDALENA C, PIETRO P. Corrosion behaviour of steel in concrete in the presence of stray current[J]. Corrosion Science, 2007, 49(3):1056‑1068. [百度学术]
XU C, LI Z, JIN W, et al. Study on chloride ion ingress distribution in wetting‑drying alternate area in marine environment[J]. Science China Technological Sciences, 2012, 55(4): 970‑976. [百度学术]
GUILHERME Y K. Revisiting the ASTM C876 standard for corrosion of reinforcing steel: On the correlation between corrosion potential and polarization resistance during the curing of different cement mortars[J]. Electrochemistry Communications, 2018, 94: 1‑4. [百度学术]
骆琳,ADRIAENS A, ELIA A,等.模拟水泥孔溶液环境下钢筋阻锈剂对极化电阻常数的影响[J].硅酸盐学报,2014, 42(5): 574‑578. [百度学术]
LUO Lin,ADRIAENS A, ELIA A, et al. Influence of corrosion Inhibitors on stern‑geary constant in simulated cement pore solutions[J]. Journal of the Chinese Ceramic Society, 2014, 42(5): 574‑578. (in Chinese). [百度学术]
MILLARD S G, LAW D, BUNGEY J H, et al. Environmental influences on linear polarization corrosion rate measurement in reinforced concrete[J]. NDT & E International, 2001, 34 (6): 409‑417. [百度学术]
KARLA H, CLAUS K L, METTE R G. Relationship between concrete resistivity and corrosion rate‑A literature review[J]. Cement and Concrete Composites, 2013, 39: 60‑72. [百度学术]