摘要
以混凝土组合形式及预制底板自燃煤矸石砂轻混凝土(SSC)的强度等级为变量,制作了5块SSC单向叠合板,通过静力加载试验,对其变形特征、破坏形态和裂缝开展情况进行了分析.结果表明:5块单向叠合板表现出相似的变形特征;分形维数分析表明,适当提高预制底板SSC的强度等级,保证了叠合面不出现滑移;合理设计的半普通混凝土-半SSC和全SSC单向叠合板,均具有良好的整体性和较高的极限荷载,能够作为楼板使用.
随着全球资源缩减和工业固废引发的环境问题以及建筑工业化的发展,大掺量固废制备装配整体式预制构件是行业发展的必然选择.近年来,国内外一些学者开展了相关研
自燃煤矸石作为一种次轻级集料,能够为实现混凝土轻质、高强、保温等提供技术途径.近年来,Zhou
粗集料(CAG)为5~20 mm连续级配的花岗岩碎石(N)和自燃煤矸石(S),其主要化学组
混凝土设计要求:SSC强度等级分别为C30、C35和C40,普通混凝土(NAC)强度等级为C30;混凝土拌和物坍落度为30~50 mm.由
采用预制-后浇混凝土组合形式,以预制底板混凝土强度等级为变量,设计5块相同配筋率的单向叠合板,尺寸为2 100 mm×600 mm×130 mm,其中预制底板层厚度60 mm,后浇面层厚度70 mm,计算长度为1 800 mm.单向叠合板设计参数及其配筋详图分别见

图1 单向叠合板配筋详图
Fig.1 Cross section of reinforcement diagram of unidirectional laminated plate (size:mm)
所有单向叠合板均在当地预制构件厂成型.由
楼板一般承受均布荷载,试验设计时采取几个集中荷载代替均布荷载(等效均布荷载).支撑方式为简支形式,支点距板端部距离为150 mm.竖向加载采用100 t液压千斤顶,采用静态数据采集仪采集压力传感器传递的荷载.
根据15G366—1《桁架钢筋叠合板》、GB 50009—2012《建筑结构荷载规范》和GB/T 50152—2012《混凝土结构试验方法标准》,采用分级逐步加载方式,每级加载完成后持续10 min,活荷载标准值取2.0 kN/

图2 测点布置
Fig.2 Layout of measure points (size:mm)
单向叠合板破坏时板侧和板底裂缝形态见
由于自燃煤矸石组成复杂、均质性较差、离散性较大,使其制备的SSC非线性动力学行为显著.由
(1) |
由

图3 单向叠合板的荷载-挠度曲线
Fig.3 Load‑deflection curves of unidirectional laminated plates
单向叠合板的荷载-混凝土应变曲线见

图4 单向叠合板的荷载-混凝土应变曲线
Fig.4 Load‑concrete strain curves of unidirectional laminated plates

图5 单向叠合板板侧混凝土应变-截面高度曲线
Fig.5 Curves of location‑concrete strain of unidirectional laminated plates

图6 荷载-钢筋应变曲线
Fig.6 Load‑steel bar strain curves
(1)桁架钢筋半普通混凝土(NAC)-半自然煤矸石砂轻混凝土(SSC)、全SSC和全NAC制备的单向叠合板,具有相似的破坏特征和破坏形态.在达到极限荷载前,伴有裂缝数量增多及宽度增加的现象,挠度存在明显的发展过程,延性破坏特征明显.在楼面活荷载标准值下,挠度均满足现行规范的限值要求,SSC制备的单向叠合板作为结构楼板使用是安全的.
(2)单向叠合板裂缝分形维数分析表明,混凝土组合形式及SCC强度等级对单向叠合板裂缝发展有一定影响,对半NAC-半SSC单向叠合板,更要关注预制-后浇混凝土弹性模量不同带来的变形差异,可以通过适当提高预制底板SSC混凝土强度等级来控制.
(3)桁架钢筋、叠合面处理及预制底板SSC的增强等共同作用下,半NAC-半SSC及全SSC单向叠合板都表现出良好的整体性和较高的极限荷载.合理设计的SSC单向叠合板作为楼板使用是可行的.
参考文献
KOSTECKI T. Influence of backfill on coalpillar strength and floor bearing capacity in weak floor conditions in the Illinois basin[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 76(1): 55‑67. [百度学术]
ELGHAZOULI A Y, LZZUDDIN B A. Realistic modeling of composite and reinforced concrete floor slabs under extreme loading. Ⅱ: Verification and application[J]. Journal of Structural Engineering, 2004, 130(12): 1985‑1996. [百度学术]
MOSALLAM A S, MOSALAM K M. Strengthening of two‑way concrete slabs with FRP composite laminates[J]. Construction and Building Materials, 2003,17(1): 43‑54. [百度学术]
FOSTER S J, BAILEY C G, BURGESS I W, et al. Experimental behaviour of concrete floor slabs at large displacements[J]. Engineering Structures, 2004,26(9): 1231‑1247. [百度学术]
AWAD Z K, ARAVINTHAN T, YAN Z, et al. Geometry and restraint effects on the bending behaviour of the glass fibre reinforced polymer sandwich slabs under point load[J]. Materials and Design, 2013,45: 125‑134. [百度学术]
CRISINEL M, MARIMON F. A new simplified method for the design of composite slabs[J]. Journal of Constructional Steel Research, 2004,60(3‑5): 481‑491. [百度学术]
LUBELL A S, BENTZ E C, COLLINS M P. Influence longitudinal reinforcement on one‑way shear in slabs and wide beams[J]. Journal of Structural Engineering, 2009,135(1): 78‑87. [百度学术]
黄超,谷倩,王朝晖,等.页岩陶粒混凝土叠合板原型堆载试验研究[J].武汉理工大学学报,2016,38(10):61‑67. [百度学术]
HUANG Chao, GU Qian, WANG Zhaohui, et al. Imposed load test of full‑scale shale‑ceramsite concrete composite slabs [J]. Journal of Wuhan University of Technology, 2016,38(10):61‑67. (in Chinese) [百度学术]
吴瑞春,孟令帅,杜红凯,等.轻骨料混凝土叠合板受力性能试验研究[J].结构工程师,2017,33(6):103‑109. [百度学术]
WU Ruichun, MENG Lingshuai, DU Hongkai, et al. Experimental study on mechanical properties of lightweight aggregate concrete superimposed slab[J]. Structural Engineers, 2017,33(6):103‑109. (in Chinese) [百度学术]
黄炜,罗斌,李斌,等.不同构造形式绿色混凝土叠合板受弯性能试验[J].湖南大学学报,2019,46(7):35‑44. [百度学术]
HUANG Wei, LUO Bin, LI Bin, et al. Experiment on flexural behavior of green concrete composite slab with different structural forms[J]. Journal of Hunan University, 2019,46(7):35‑44. (in Chinese) [百度学术]
谷倩,雷晓天,黄超,等.页岩陶粒轻质混凝土双向叠合楼板受力性能试验及挠度计算分析[J].建筑科学与工程学报,2018,35(6):102‑110. [百度学术]
GU Qian, LEI Xiaotian, HUANG Chao, et al. Mechanical performance test and deflection calculation analysis of shale ceramsite lightweight concrete two‑way composite floor slab[J]. Journal of Architecture and Civil Engineering, 2018,35(6):102‑110. (in Chinese) [百度学术]
ZHOU M, DOU Y W, ZHANG Y Z. Effects of the variety and content of coal gangue coarse aggregate on the mechanical properties of concrete[J]. Construction and Building Materials, 2019, 220: 386‑395. [百度学术]
李少伟,周梅,张莉敏.自燃煤矸石粗集料特性及其对混凝土性能的影响[J].建筑材料学报,2020,23(2):334‑340,380. [百度学术]
LI Shaowei, ZHOU Mei, ZHANG Limin. Properties of spontaneous combustion coal gangue coarse aggregate and its influence on concrete[J]. Journal of Building Material, 2020, 23(2) :334‑340, 380. (in Chinese) [百度学术]
闫亚杰,赵强.装配式自燃煤矸石细石混凝土夹层楼板设计与试验研究[J].混凝土,2019(6):130‑133,160. [百度学术]
YAN Yajie, ZHAO Qiang. Design and experimental study on assembled spontaneous combustion coal gangue fine stone concrete sandwich floor[J]. Concrete, 2019 (6):130‑133,160. (in Chinese) [百度学术]
杨尚谕,周梅,张玉琢,等.自燃煤矸石粗集料取代率对混凝土断裂韧性的影响[J].建筑材料学报,2020,23(4):858‑864. [百度学术]
YANG Shangyu, ZHOU Mei, ZHANG Yuzhuo, et al. Effect of spontaneous combustion coal gangue coarse aggregate replacement ratio on fracties of three‑point bending concrete beam[J]. Journal of Building Materials, 2020,23(4):858‑864. (in Chinese) [百度学术]