超高性能混凝土单轴受拉黏塑性损伤本构模型
作者:
作者单位:

1.同济大学;2.同济大学建筑设计研究院(集团)有限公司

中图分类号:

TU528.572

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Uniaxial Tensile Viscoplastic Damage Constitutive Model of Ultra-high Performance Concrete
Author:
Affiliation:

1.Tongji University;2.Tongji Architectural Design (Group) Co., Lid

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    本文对超高性能混凝土单轴受拉黏塑性损伤本构模型展开了研究:基于有效应力空间内的黏塑性理论框架,阐明了单轴动力受拉与单轴静力受拉的理论关联,开展了塑性演化和损伤演化的率敏感性研究,揭示了动力受拉状态下的塑性演化准则和损伤演化准则,进一步建立了超高性能混凝土单轴受拉黏塑性损伤本构模型,同时提出了受拉强度动力提高因子的表达式.通过单轴静力受拉试验数据和单轴动力受拉试验数据对提出的单轴受拉黏塑性损伤本构模型进行验证.结果表明,本文提出的模型可以较好地再现超高性能混凝土在单轴受拉状态下的塑性演化、损伤演化和应力应变关系,为超高性能混凝土的非线性分析提供了参考.

    Abstract:

    In this paper, the uniaxial tensile viscoplastic damage constitutive model of ultra-high performance concrete is investigated. Based on the theoretical framework of viscoplasticity in the effective stress space, the theoretical correlation between uniaxial dynamic tensile and uniaxial static tensile is elucidated, the rate sensitivity study of plasticity evolution and damage evolution is carried out, the plasticity evolution criterion and damage evolution criterion under dynamic tensile state are revealed. On this basis, the uniaxial tensile viscoplastic damage constitutive model of ultra-high performance concrete is further constructed, and the expression for the dynamic improvement factor of tensile strength is proposed. The proposed uniaxial tensile viscoplastic damage constitutive model is verified by uniaxial static tension test data and uniaxial dynamic tension test data. The results show that the model proposed in this paper can better reproduce the plastic evolution, damage evolution and stress-strain relationship of ultra-high performance concrete under uniaxial tensile, which provides a reference for the nonlinear analysis of ultra-high performance concrete.

    参考文献
    [1] 陈庆, 马瑞, 蒋正武, 等. 基于GA-BP神经网络的UHPC抗拉强度预测与配合比设计[J]. 建筑材料学报, 2020, 23(01): 176-183+191.CHEN Qing, MARui, JIANG Zhengwu, et al. Compressive strength prediction and mix proportion design of UHPC based on GA-BP neural network[J]. Journal of Building Materials, 2020, 23(01): 176-183+191. (in Chinese)
    [2] 刘康宁, 尹天一, 余睿. 超高性能混凝土颗粒紧密堆积理论优化探索[J]. 建筑材料学报, 2023, 26(07): 739-745.LIU Kangning, YIN Tianyi, YU Rui. Optimization exploration of particle close packing theory in ultra-high performance concrete[J]. Journal of Building Materials, 2023, 26(07): 739-745. (in Chinese)
    [3] 李力剑, 徐礼华, 池寅, 等. 含粗骨料超高性能混凝土单轴受拉疲劳性能[J]. 建筑材料学报, 2022, 25(04): 381-388.LI Lijian, XU Lihua, CHI Yin, et al. Fatigue performance of ultra-high performance concrete containing coarse aggregate under uniaxial cyclic compression[J]. Journal of Building Materials, 2022, 25(04): 381-388. (in Chinese)
    [4] 王龙, 池寅, 徐礼华, 等. 混杂纤维超高性能混凝土力学性能尺寸效应[J]. 建筑材料学报, 2022, 25(08): 781-788.WANG Long, CHI Yin, XU Lihua, et al. Size effect of mechanical properties of hybrid fiber ultra-high performance concrete[J]. Journal of Building Materials, 2022, 25(08): 781-788. (in Chinese)
    [5] 赵一鹤, 孙振平, 穆帆远, 等. 钢纤维对UHPC拉伸性能及其拔出行为的影响[J]. 建筑材料学报, 2021, 24(02): 276-282.ZHAO Yihe, SUN Zhenping, MU Fanyuan, et al. Effect of steel fibers on tensile properties of ultra-high performance concrete and its pullout behavior[J]. Journal of Building Materials, 2021, 24(02): 276-282. (in Chinese)
    [6] 李力剑, 刘素梅, 徐凡丁, 等. 含粗骨料超高性能混凝土的单轴受拉力学性能[J]. 建筑材料学报, 2024, 27(02): 167-173.LI Lijian, XU Lihua, CHI Yin, et al. Fatigue performance of ultra-high performance concrete containing coarse aggregate under uniaxial cyclic compression[J]. Journal of Building Materials, 2024, 27(02): 167-173. (in Chinese)
    [7] 朋改非, 牛旭婧, 赵怡琳. 异形钢纤维对超高性能混凝土增强增韧的影响[J]. 建筑材料学报, 2016, 19(06): 1013-1018.PENG Gaifei, NIU Xujing, ZHAO Y?ilin. Effects of deformed steel fiber on strengthening and toughening of ultra-high performance concrete[J]. Journal of Building Materials, 2016, 19(06): 1013-1018. (in Chinese)
    [8] 安明喆, 高扬, 王月, 等. “烟塔合一”排烟冷却塔混凝土的耐久性研究[J]. 建筑材料学报, 2018, 21(02): 275-280.AN Mingzhe, GAO Yang, WANG Yue, et al. Durability of Concrete in Natural Draft Cooling Tower with Flue Gas Injection[J]. Journal of Building Materials, 2018, 21(02): 275-280. (in Chinese)
    [9] Hassan M, Wille K. Direct tensile behavior of steel fiber reinforced ultra-high performance concrete at high strain rates using modified split Hopkinson tension bar[J]. Composites Part B: Engineering, 2022, 246: 110259.
    [10] Pyo S, El-Tawil S, Naaman A E. Direct tensile behavior of ultra high performance fiber reinforced concrete (UHP-FRC) at high strain rates[J]. Cement and Concrete Research, 2016, 88: 144-156.
    [11] Wu H, Ren G M, Fang Q, et al. Effects of steel fiber content and type on dynamic tensile mechanical properties of UHPCC[J]. Construction and Building Materials, 2018, 173: 251-261.
    [12] Tran N T, Kim D J. Synergistic response of blending fibers in ultra-high-performance concrete under high rate tensile loads[J]. Cement and Concrete Composites, 2017, 78: 132-145.
    [13] Yang S, Tang Z, Zhong W, et al. Effects of steel fibers on the dynamic properties and failure process of ultra-high performance concrete[J]. Journal of Building Engineering, 2022, 62: 105415.
    [14] Duvant G, Lions J L. Inequalities in mechanics and physics[M]. Berlin: Springer-Verlag, 1976.
    [15] Perzyna, P. Fundamental problems in viscoplasticity[J]. Advances in applied mechanics, 1966, 9: 243-377.
    [16] Fib model code for concrete structures 2010[S]. Berlin: Ernst&Sohn, 2013.
    [17] Krahl P A, Gidr?o G M S, Carrazedo R. Compressive behavior of UHPFRC under quasi-static and seismic strain rates considering the effect of fiber content[J]. Construction and Building Materials, 2018, 188: 633-644.
    [18] Huang H, Gao X, Khayat K H. Contribution of fiber orientation to enhancing dynamic properties of UHPC under impact loading[J]. Cement and Concrete Composites, 2021, 121: 104108.
    [19] Wang S N, Xu L H., Chi Y, et al. Cyclic tensile behavior of ultra-high performance concrete with hybrid steel-polypropylene fiber: Experimental study and analytical model[J]. Composite Structures, 2023, 321: 117255.
    [20] Wang S N, Xu L H., Chi Y, et al. Constitutive behavior of ultra-high-performance steel fiber reinforced concrete under monotonic and cyclic tension[J]. Journal of Building Engineering, 2023, 68: 105991.
    [21] Tian X, Fang Z, Zhou T, et al. Behavior and constitutive model of ultra-high-performance concrete under monotonic and cyclic tensile loading[J]. Construction and Building Materials, 2023, 389: 131634.
    [22] Krahl P A, Carrazedo R, El-Debs M K. Mechanical damage evolution in UHPFRC: Experimental and numerical investigation[J]. Engineering Structures, 2018, 170: 63-77.
    [23] Cadoni E, Forni D. Experimental analysis of the UHPFRCs behavior under tension at high stress rate[J]. The European Physical Journal Special Topics, 2016, 225(2): 253-264.
    [24] Rong Z, Sun W. Experimental and numerical investigation on the dynamic tensile behavior of ultra-high performance cement based composites[J]. Construction and Building Materials, 2012, 31: 168-173.
    [25] Tai Y S, El-Tawil S, Chung T H. Performance of deformed steel fibers embedded in ultra-high performance concrete subjected to various pullout rates[J]. Cement and Concrete Research, 2016, 89: 1-13.
    [26] Cadoni E, Meda A, Plizzari G A. Tensile behaviour of FRC under high strain-rate[J]. Materials and structures, 2009, 42: 1283-1294.
    [27] Chen M, Sun J, Zhang T, et al. Enhancing the dynamic splitting tensile performance of ultra-high performance concrete using waste tyre steel fibres[J]. Journal of Building Engineering, 2023, 80: 108102.
    [28] Tran N T, Tran T K, Jeon J K, et al. Fracture energy of ultra-high-performance fiber-reinforced concrete at high strain rates[J]. Cement and Concrete Research, 2016, 79: 169-184.
    [29] Tran T K, Kim D J. High strain rate effects on direct tensile behavior of high performance fiber reinforced cementitious composites[J]. Cement and Concrete Composites, 2014, 45: 186-200.
    [30] Pyo S, Wille K, El-Tawil S, et al. Strain rate dependent properties of ultra high performance fiber reinforced concrete (UHP-FRC) under tension[J]. Cement and Concrete Composites, 2015, 56: 15-24.
    [31] Wille K, Xu M, El-Tawil S, et al. Dynamic impact factors of strain hardening UHP-FRC under direct tensile loading at low strain rates[J]. Materials and Structures, 2016, 49: 1351-1365.
    [32] Tran N T, Tran T K, Kim D J. High rate response of ultra-high-performance fiber-reinforced concretes under direct tension[J]. Cement and Concrete Research, 2015, 69: 72-87.
    [33] Zhao X, Li Q, Xu S. Contribution of steel fiber on the dynamic tensile properties of hybrid fiber ultra high toughness cementitious composites using Brazilian test[J]. Construction and Building Materials, 2020, 246: 118416.
    [34] Zhong H, Chen M, Zhang M. Effect of hybrid industrial and recycled steel fibres on static and dynamic mechanical properties of ultra-high performance concrete[J]. Construction and Building Materials, 2023, 370: 130691.
    [35] Park S H, Kim D J, Kim S W. Investigating the impact resistance of ultra-high-performance fiber-reinforced concrete using an improved strain energy impact test machine[J]. Construction and Building Materials, 2016, 125: 145-159.
    [36] Park J K, Kim S W, Kim D J. Matrix-strength-dependent strain-rate sensitivity of strain-hardening fiber-reinforced cementitious composites under tensile impact[J]. Composite Structures, 2017, 162: 313-324.
    [37] Yao Y, Silva F A, Butler M, et al. Tensile and flexural behavior of ultra-high performance concrete (UHPC) under impact loading[J]. International Journal of Impact Engineering, 2021, 153: 103866.
    [38] Su Y, Li J, Wu C, et al. Effects of steel fibres on dynamic strength of UHPC[J]. Construction and Building Materials, 2016, 114: 708-718.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-20
  • 最后修改日期:2025-03-19
  • 录用日期:2025-03-20
文章二维码