基于Stone-SAM的便携式粗集料级配智能检测
作者:
作者单位:

中交第二航务工程局有限公司


Portable Intelligent Detection of Coarse Aggregate Gradation Based on Stone-SAM
Author:
Affiliation:

China Communications Second Navigation Engineering Bureau Co., Ltd.

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [13]
  • | | | |
  • 文章评论
    摘要:

    为实现精确的粗集料级配检测,本研究提出一种便携式粗集料级配智能检测方法.采用知识蒸馏的策略对视觉大模型SAM进行网络结构轻量化,嵌入神经网络分类器PP-HGNetV2为模型提供语义判断的能力,设计粗集料颗粒特征参数数学表征算法,开发移动端应用程序,实现粗集料级配高通量检测.对5种不同粗集料级配场景进行测试,结果表明本研究方法对于粗集料颗粒的分割精度高于原始SAM模型,并且能够精确去除背景信息,粗集料颗粒关键参数提取结果准确可靠.

    Abstract:

    To achieve precise detection of coarse aggregate gradation, this study proposes an intelligent portable detection method for coarse aggregate gradation. A knowledge distillation strategy is employed to lighten the network structure of the large visual model SAM, and the neural network classifier PP-HGNetV2 is embedded to provide the model with semantic judgment capabilities. A mathematical representation algorithm for the characteristic parameters of coarse aggregate particles is designed, and a mobile application is developed to enable high-throughput detection of coarse aggregate gradation. Tests were conducted on five different coarse aggregate gradation scenarios, and the results indicate that the proposed method achieves higher segmentation accuracy for coarse aggregate particles compared to the original SAM model. It also precisely removes background information, and the extracted key parameters of coarse aggregate particles are accurate and reliable.

    参考文献
    [1] Luiz Roberto Prudêncio,Denis Fernandes Weidmann, Alexandre Lima de Oliveira,etc. Particle shapeanalysis of fine aggregate using a simplified digital image processing method[J]. Magazine ofConcrete Research,2013,65(1).
    [2] C.F. Mora, A.K.H. Kwan. Sphericity, shape factor, and convexity measurement of coarse aggregatefor concrete using digital image processing[J]. Cement and Concrete Research,2000,30(3).
    [3] Kirillov A, Mintun E, Ravi N, et al. Segment anything[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 4015-4026.
    [4] Zhang R, Jiang Z, Guo Z, et al. Personalize segment anything model with one shot[J]. arXiv preprint arXiv:2305.03048, 2023.
    [5] Ma Z, Hong X, Shangguan Q. Can sam count anything? an empirical study on sam counting[J]. arXiv preprint arXiv:2304.10817, 2023.
    [6] Chen T, Zhu L, Ding C, et al. Sam fails to segment anything?–sam-adapter: Adapting sam in underperformed scenes: Camouflage, shadow, and more[J]. arXiv preprint arXiv:2304.09148, 2023, 1(2): 5.
    [7] Xu Y, Tang J, Men A, et al. Eviprompt: A training-free evidential prompt generation method for segment anything model in medical images[J]. arXiv preprint arXiv:2311.06400, 2023.
    [8] Jiang Q, Li F, Ren T, et al. T-Rex: Counting by Visual Prompting[J]. arXiv preprint arXiv:2311.13596, 2023.
    [9] Xiong Y, Varadarajan B, Wu L, et al. Efficientsam: Leveraged masked image pretraining for efficient segment anything[J]. arXiv preprint arXiv:2312.00863, 2023.
    [10] Pan Y, Zhang S, Gernand A D, et al. AI-SAM: Automatic and Interactive Segment Anything Model[J]. arXiv preprint arXiv:2312.03119, 2023.
    [11] Ke L, Ye M, Danelljan M, et al. Segment anything in high quality[J]. Advances in Neural Information Processing Systems, 2024, 36.
    [12] Zhao X, Ding W, An Y, et al. Fast segment anything[J]. arXiv preprint arXiv:2306.12156, 2023.
    [13] Zhang C, Han D, Qiao Y, et al. Faster segment anything: Towards lightweight sam for mobile applications[J]. arXiv preprint arXiv:2306.14289, 2023.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:41
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-07-15
  • 最后修改日期:2024-11-25
  • 录用日期:2024-11-27
文章二维码