不同钢渣细度矿粉地聚合物流变性及预测模型
作者单位:

1.宁夏大学;2.Research Group RecyCon, Department of Civil Engineering, KU Leuven

中图分类号:

TU526;U414

基金项目:

无机固废协同制备绿色低碳建材技术研发与智能化应用示范


Rheological properties and prediction model of geopolymers with different steel slag fineness ore powder
Affiliation:

1.Ningxia University;2.Research Group RecyCon, Department of Civil Engineering, KU Leuven

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • | | | |
  • 文章评论
    摘要:

    为探究钢渣在不同细度下对钢渣-矿粉基地聚合物(SSG)流变性能影响,通过流动度、流变仪、水膜层厚度(water film thickness,WFT)试验研究不同细度钢渣流变性的变化规律,并基于流动度和WFT与流变参数的相关性,利用BP神经网络建立流变参数预测模型.结果表明,随着钢渣细度的提高,新拌地聚合物砂浆的流动性得到改善,并缩短其凝结时间和降低其WFT.钢渣细度的变化并未改变流体类型,流变特征符合Bingham模型,表观黏度随着剪切速率增大逐渐降低,屈服应力、塑性黏度、触变性随着钢渣细度增加持续降低,流变参数随着静置时间增加不断增大且增长率也呈逐渐增大趋势.同时,流动度与屈服应力成正相关,WFT与屈服应力、流动度存在着较好线性关系.建立的BP神经网络流变参数预测模型,预测结果吻合度良好、精度高.

    Abstract:

    In order to explore the influence of steel slags of different fineness on the rheological properties of the steel slag-mineral powder base polymer, the variation law of the rheology of different steel slag fineness was studied by fluidity, rheometer and water film thickness tests, and the rheological parameter prediction model was established by BP neural network based on the correlation between fluidity and WFT and rheological parameters. The results show that with the increase of steel slag fineness, the fluidity of the freshly mixed polymer mortar is improved, and its setting time and WFT are shortened. The change in slag fineness does not change the fluid type and the rheological characteristics are in line with the Bingham model. The apparent viscosity gradually decreases with the increase of shear rate, the yield stress, plastic viscosity and thixotropy continue to decrease with the increase of steel slag fineness, the rheological parameters increased with the increase of the standing time, and the growth rate also showed a gradual increasing trend. Meantime, the fluidity is positively correlated with the yield stress, and the WFT has a good linear relationship with the yield stress and fluidity. The BP neural network rheological parameter prediction model was established, and the prediction results were in good agreement and high accuracy.

    参考文献
    [1] [ ] 曹娃,伊元荣,马佐等.碱激发粉煤灰-钢渣地质聚合物的抗压强度实验研究[J].环境科学与技术,2014,37(12):205-208.
    CAO Wa, YI Yuanrong, MA Zuo, et al. Experimental study on compressive strength of alkali-activated fly ash-steel slag geopolymers[J]. Environmental Science and Technology, 2014, 37(12):205-208. (in Chinese)
    [3] [ ] WANG Penghui, CHEN Ping, MING Yang, et al. In-Depth Insight into the Effects of Steel Slag and Calcium Hydroxide on the Properties of a Fly Ash–Red Mud Geopolymer[J]. Materials, 2024, 17(6):1249.
    [4] [ ] HUANG Guofu, WANG Mianmian, LIU Qing, et al. Simultaneous utilization of mine tailings and steel slag for producing geopolymers: Alkali-hydrothermal activation, workability, strength, and hydration mechanism[J]. Construction and Building Materials, 2024, 414:135029.
    [5] [ ] 高英力,祝张煌,孟浩,等.电石渣-脱硫石膏-钢渣改性粉煤灰地聚物协同增强机理[J].建筑材料学报,2023,26(08):870-878.
    GAO Yingli, ZHU Zhanghuang, MENG Hao, et al. Synergistic enhancement mechanism of calcium carbide slag-desulfurization gypsum-steel slag modified fly ash geopolymers[J].Journal of Building Materials,2023,26(08):870-878. (in Chinese)
    [7] [ ] Paula A P S D, Humberto J F R V T, Henrique M S D P. Structural characterization of sustainable geopolymers of steel slag LD and steel slag LF with KOH[J]. MATERIA-RIO DE JANEIRO,2020,25(3):
    [8] [ ] Wilson O, Solomon O. Mechanical and durability assessments of steel slag-seashell powder-based geopolymer concrete[J]. Heliyon,2023,9(2):e13188-e13188.
    [9] [ ] 陈锐,张星,朱月.钢渣水泥基地聚合物固化湿软黄土力学特性与微观机制[J].重庆交通大学学报(自然科学版),2023,42(06):55-61.
    CHEN Rui, ZHANG Xing, ZHU Yue. Mechanical properties and microscopic mechanism of polymer solidification wet and soft loess in steel slag cement base[J].Journal of Chongqing Jiaotong University(Natural Science Edition),2023,42(06):55-61. (in Chinese)
    [11] [ ] 郭晓潞,黄加宝,章红梅.纤维增强粉煤灰-钢渣基地聚合物耐高温性能[J].建筑材料学报,2019,22(04):530-537.
    GUO Xiaolu, HUANG Jiabao, ZHANG Hongmei. High temperature resistance of fiber-reinforced fly ash-steel slag base polymer[J]. Journal of Building Materials,2019,22(04):530-537. (in Chinese)
    [13] [ ] 王鹏刚,高义志,陈际洲,等.新拌低水胶比水泥浆体流变性能影响因素及流变参数预测方法[J/OL].复合材料学报:1-11[2024-06-26]. https://doi.org/10.13801/j.cnki.fhclxb.20240403.001.
    WANG Penggang, GAO Yizhi, CHEN Jizhou, et al. Influencing factors and rheological parameters prediction method of rheological properties of cement slurry with fresh mix low water-to-glue ratio[J/OL]. Journal of Composite Materials:1-11[2024-06-26]. https: //doi.org/ 10.13801/ j.cnki. fhclxb. 20240403.001. (in Chinese)
    [15] [ ] NIU Yonghui, CHEN Haiyong, WU Shunchuan, et al. Rheological properties of cemented paste backfill and the construction of a prediction model[J]. Case Studies in Construction Materials,2022,16: e01140.
    [16] [ ] 汪雅婷,黎俊良,袁楷峰,等.基于GA改进BP神经网络预测热变形流变应力模型的建立[J].材料工程,2022,50(06):170-177.
    WANG Yating, LI Junliang, YUAN Kaifeng, et al. Establishment of rheological stress model for thermal deformation prediction based on improved BP neural network based on GA[J].Materials Engineering,2022,50(06):170-177. (in Chinese)
    [18] [ ] GUO Jin ,WU Qiong ,SUN Longpan , et al. Lap-slip model of rebar-to-concrete in RC/ECC/UHPC based on GA-BP neural network[J].Case Studies in Construction Materials,2024,20:e03287.
    [19] [ ] 熊仲明,熊俊龙,王泽坤,等.基于神经网络的跨越地裂缝框架结构地震损伤及预测研究[J].防灾减灾工程学报,2024,44(02):362-371. DOI: 10.13409/ j. cnki. jdpme.20221209002.
    XIONG Zhongming, XIONG Junlong, WANG Zekun, et al. Research on seismic damage and prediction of frame structures across ground fissures based on neural network[J].Journal of Disaster Prevention and Mitigation Engineering,2024,44(02):362-371.) DOI: 10.13409/ j. cnki. jdpme.20221209002. (in Chinese)
    [21] [ ] GAO Chunhua, LI Cun, QIN Mengyuan, et al. Multi-parameter identification of earthquake simulation shaking table based on BP neural network[J].Frontiers in Physics,2024,12:
    [22] [ ] 刘泽民,程海勇,毛明发,等.基于3D卷积神经网络的膏体屈服应力预测[J].工程科学学报,2024,46(08):1337-1348.DOI:10.13374/j.issn2095-9389.2023.10.11.005.
    LIU Zemin, CHENG Haiyong, MAO Mingfa, et al. Paste yield stress prediction based on 3D convolutional neural network[J].Chinese Journal of Engineering,2024,46(08):1337-1348.DOI:10.13374/j.issn2095-9389.2023.10.11.005. (in Chinese)
    [24] [ ] Wong C H H, Kwan H K A. Packing density of cementitious materials: part 1—measurement using a wet packing method[J]. Materials and Structures, 2008, 41(4):689-701.
    [25] [ ] Kwan H K A, Wong C H H. Packing density of cementitious materials: part 2—packing and flow of OPC + PFA+ CSF[J].Materials and Structures,2008,41(4):773-784.
    [26] [ ] Kwan A, McKinley M. Effects of limestone fines on water film thickness, paste film thickness and performance of mortar[J]. Powder Technology, 2014, 26133-41.
    [27] [ ] ZHAO Yunchuan, DONG Xuming, ZHOU Zicun, et al. Investigation on Roles of Packing Density and Water Film Thickness in Synergistic Effects of Slag and Silica Fume[J]. Materials, 2022, 15(24):8978-8978.
    [28] [ ] ZHU Luyi, WANG Kun, WANG Zhikai, et al. Rheology of ultrafine tailings cemented paste backfill: The effect of the aqueous solution pH and superplasticiser dosage[J]. Construction and Building Materials, 2023, 404:133270.
    [29] [ ] 张涛,陈铁军,陈永亮,等.机械活化和不锈钢渣掺量对矿渣胶凝材料性能的影响[J].硅酸盐通报, 2022, 41(02):553-561.DOI:10.16552/j.cnki.issn1001-1625.2022.02.004.
    ZHANG Tao, CHEN Tiejun, CHEN Yongliang, et al. Effect of mechanical activation and stainless steel slag content on the properties of slag cementitious materials[J].Bulletin of the Chinese Ceramic Journal, 2022, 41(02):553-561.DOI:10.16552/j.cnki.issn1001-1625.2022.02.004.(in Chinese)
    [31] [ ]WANG Yuanda, WANG Xuefang, LOU Ying, et al. Effect of mechanical activation on reaction mechanism of one-part fly ash/slag-based geopolymer[J]. Advances in Cement Research, 2022, 1-38.
    [32] [ ] LI Bin, ZHANG Wenjiao, FANG Xiaohong, et al. Coupling effects of sewage sludge and recycled fine aggregate on the properties of geopolymer recycled mortars[J]. Case Studies in Construction Materials, 2024, 20:e03067.
    [33] [ ] 曾远宏.水泥砂浆的流变性能研究和流变参数预测[D].重庆大学,2007.
    ZENG Yuanhong. Research on rheological properties and rheological parameter prediction of cement mortar[D].Chongqing University,2007.
    [35] [ ] 车雪萍.基于碱激发机理的再生微粉胶凝体系流变性能、力学性能及水化机理研究[D]. 青岛理工大学, 2023. DOI:10.27263/d.cnki.gqudc.2023.000367.
    CHE Xueping. Study on rheological properties, mechanical properties and hydration mechanism of regenerated micronized cementitious system based on alkali excitation mechanism[D]. Qingdao University of Technology, 2023. DOI:10.27263/d.cnki.gqudc.2023.000367. (in Chinese)
    [37] [ ] WANG Qing, XING Zihao, HE Jianqian, et al. Effective solution for improving rheological properties of cement paste containing zeolite[J]. Construction and Building Materials, 2022, 351:128780.
    [38] [ ] CHEN Youzhi, WU Xiuqi, YIN Weisong, et al. Effects of Waste Glass Powder on Rheological and Mechanical Properties of Calcium Carbide Residue Alkali-Activated Composite Cementitious Materials System.[J]. Materials (Basel, Switzerland), 2023, 16(9):3590.
    [39] [ ] 刘超,蒙毅升,武怡文,等.3D打印再生砂浆早期流变性能及结构经时演化研究[J].材料导报,2024,38(09):122-129.
    Liu Chao, Meng Yisheng, Wu Yiwen, et al.3D Study on early rheological properties and structural evolution of printed recycled mortar[J].Materials Reports,2024,38(09):122-129. (in Chinese)
    [41] [ ] 侯悦悦,曾晓辉,龙广成,等.天然火山灰-水泥-粉煤灰复合浆体流变性能[J].材料导报,2022,36(19):97-102.
    HOU Yueyue, ZENG Xiaohui, LONG Guangcheng, et al. Rheological properties of natural pozzolane-cement-fly ash composite slurry[J]. Materials Reports,2022,36(19):97-102. (in Chinese)
    [43] [ ] ZHANG Zhao, FENG Qingge, ZHU Weiwei, et al. Influence of Sand-Cement Ratio and Polycarboxylate Superplasticizer on the Basic Properties of Mortar Based on Water Film Thickness[J]. Materials, 2021, 14(17):4850-4850.
    [44] [ ] 刘宇.复合胶凝材料浆体的结构建立与流变性能研究[D].清华大学,2022. DOI:10.27266 /d.cnki.gq hau. 2022. 000042.
    LIU Yu. Study on structure establishment and rheological properties of composite cementitious material slurry[D].Tsinghua University,2022. DOI:10.27266 /d.cnki.gq hau. 2022. 000042.(in Chinese)
    [46] [ ] Sangwoo O, Seongcheol C. Effects of superabsorbent polymers (SAP) on the rheological behavior of cement mortars: A rheological study on performance requirements for 3D printable cementitious materials[J]. Construction and Building Materials, 2023, 392:131856.
    [47] [ ] 朱江.石粉对水泥浆体流变性能的影响及作用机制[D].重庆大学, 2022. DOI:10.27670/d.cnki.gcqdu.2022. 004481.
    ZHU Jiang. Effect and mechanism of stone powder on rheological properties of cement slurry[D].Chongqing University, 2022. DOI:10.27670/d.cnki.gcqdu.2022. 004481.(in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:65
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-06-28
  • 最后修改日期:2024-09-06
  • 录用日期:2024-09-09
文章二维码