碳/钢纤维对碱激发砂浆导电性的影响机理
作者单位:

1.东华理工大学;2.中国矿业大学

中图分类号:

TU528


Influence Mechanism of Carbon/Steel Fiber on Conductivity of Alkali-activated Material Based Mortar
Author:
Affiliation:

1.East China University of Technology;2.China University of Mining &3.Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • | | | |
  • 文章评论
    摘要:

    采用碱激发煤矸石-矿渣(AACGS)与碳纤维(CF)和钢纤维(SF)制备CF-AACGS基和SF-AACGS基导电砂浆,分析了纤维种类和掺量对砂浆力学性能和电阻率的影响规律,并讨论了砂浆在不同含水量和环境温度下的导电性.结果表明,单掺0.45vol%CF或单掺2.0vol%SF时,砂浆28d的抗折强度分别提高了67.66%、80.78%,并且抗压强度也得到提升.单掺0.3vol%CF或单掺1.5vol%SF时,砂浆内部即形成空间导电网络并达到渗流阈值,致使电阻率显著减小,同时使含水量和环境温度对其导电性的影响显著降低.

    Abstract:

    Alkali-activated coal gangue-slag (AACGS), carbon fiber (CF) and steel fiber (SF) were used to prepare CF-AACGS-based and SF-AACGS-based conductive mortars. The effect of fiber type and fiber content on the mechanical properties and resistivity of mortar were investigated, and the conductive of mortar at different water content and ambient temperature was discussed. The results showed that the 28-day flexural strength of the mortar was increased by 67.66% and 80.78% when 0.45 vol% CF alone or 2.0 vol% SF alone was added, respectively. And the compressive strength was improved. At 0.3 vol% CF or 1.5 vol% SF, the spatial conductive network was formed inside the mortar and the percolation threshold was reached, resulting in lower resistivity. And the effect of water content and ambient temperature on its conductivity was significantly reduced.

    参考文献
    [1] 赵若红,区浩文,傅继阳,等.掺工业废弃料导电砂浆电阻率稳定性研究[J].材料导报,2015,29(12):129-134.ZHA Ruohong, QU Haowen, FU Jiyang, et al. Resistivity stability study of conductive mortar mixed with industrial waste material[J]. Materials Reports, 2015, 29(12): 129-134. (in Chinese)
    [2] Downey A, D’Alessandro A, Baquera M, et al. Damage detection, localization and quantification in conductive smart concrete structures using a resistor mesh model[J]. Engineering Structures, 2017, 148: 924-935.
    [3] Gurer C, Fidan U, Korkmaz B E. Investigation of using conductive asphalt concrete with carbon fiber additives in intelligent anti-icing systems[J]. International Journal of Pavement Engineering, 2023, 24(1): 2077941.
    [4] Wanasinghe D, Aslani F, Ma G. Effect of water to cement ratio, fly ash, and slag on the electromagnetic shielding effectiveness of mortar[J]. Construction and Building Materials, 2020, 256: 119409.
    [5] 贾兴文,张新,马冬,等.导电混凝土的导电性能及影响因素研究进展[J].材料导报,2017,31(21):90-97.JIA Xingwen, ZHANG Xin, MA Dong, et al. Progress in the study of conductive properties and influencing factors of conductive concrete. Materials Reports, 2017, 31(21): 90-97. (in Chinese)
    [6] 蒋林华,白舒雅,金鸣,等.石墨烯水泥基复合材料的电导率研究[J].哈尔滨工程大学学报,2018,39(03):601-606.JIANG Linhua, BAI Shuya, JIN Ming, et al. Electrical conductivity study of graphene cementitious composites[J]. Journal of Harbin Institute of Technology, 2018, 39(03): 601-606. (in Chinese)
    [7] Sassani A, Arabzadeh A, Ceylan H, et al. Carbon fiber-based electrically conductive concrete for salt-free deicing of pavements[J]. Journal of cleaner production, 2018, 203: 799-809.
    [8] Belli A, Mobili A, Bellezze T, et al. Commercial and recycled carbon/steel fibers for fiber-reinforced cement mortars with high electrical conductivity[J]. Cement and Concrete Composites, 2020, 109: 103569.
    [9] Ayd?n S, Baradan B. The effect of fiber properties on high performance alkali-activated slag/silica fume mortars[J]. Composites Part B, 2013, 45(1):63-69.
    [10] Liang S, Song G, Du H, et al. Mesoscale FE analysis of thermal conductivity of steel fiber-reinforced cementitious materials considering fiber-matrix interface and pore effects[J]. Cement and Concrete Composites, 2023, 142: 105194.
    [11] Lingyu T, Dongpo H, Jianing Z, et al. Durability of geopolymers and geopolymer concretes: A review[J]. Reviews on Advanced Materials Science, 2021, 60(1): 1-14.
    [12] Ma R, Wang G, Sun Q. Preparation and strength formation mechanism of alkali-stimulated spontaneous combustion gangue-granulated blast furnace slag backfill[J]. Environmental Science and Pollution Research, 2024, 31(1): 723-739.
    [13] Zhang B, Yan B, Li Y. Study on mechanical properties, freeze–thaw and chlorides penetration resistance of alkali activated granulated blast furnace slag-coal gangue concrete and its mechanism[J]. Construction and Building Materials, 2023, 366: 130218.
    [14] 马宏强,易成,陈宏宇,等.碱激发煤矸石-矿渣胶凝材料的性能和胶结机理[J].材料研究学报,2018,32(12):898-904.MA Hongqiang, YI Cheng, CHEN Hongyu, et al. Properties and cementation mechanism of alkali-inspired gangue-slag cementitious materials[J]. Chinese Journal of Materials Research, 2018, 32(12): 898-904. (in Chinese)
    [15] 李黎,委玉杰,李宗利,等.基于纤维增强指数的碱激发砂浆物理力学性能[J].硅酸盐学报,2022,50(08):2212-2220.LI Ming, WEI Yujie, LI Zongli, et al. Physical and Mechanical Properties of Alkali-Inspired Mortars Based on Fiber Reinforcement Indices[J]. Journal of the Chinese Ceramic Society, 2022, 50(08): 2212-2220. (in Chinese)
    [16] Hajimohammadi A, Masoumi S, Kim T, et al. Chemo‐mechanical properties of carbon fiber reinforced geopolymer interphase[J]. Journal of the American Ceramic Society, 2022, 105(2): 1519-1532.
    [17] 林江源,童立元,李洪江,等.碳纤维水泥土压电性及传感器性能研究[J/OL].岩土力学:1-12[2024-05-07].LIN Jiangyuan, TONG Liyuan, LI Hongjiang, et al. Study on the piezoelectricity and sensor performance of carbon fiber hydroclay[J/OL]. Rock and Soil Mechanics: 1-12[2024-05-07]. (in Chinese)
    [18] 韩瑞杰,程忠庆,高屹,等.多层石墨烯/钢纤维复合砂浆导电性能研究[J].硅酸盐通报,2020,39(01):34-40.HANG Ruijie, CHENG Zhongqing, GAO Yi, et al. Study on the electrical conductivity of multilayer graphene/steel fiber composite mortar[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(01):34-40. (in Chinese)
    [19] Han B, Zhang L, Zhang C, et al.Reinforcement effect and mechanism of carbon fibers to mechanical and electrically conductive properties of cement-based materials[J].Construction and Building Materials, 2016,125479-489.
    [20] 孙敏,朱浩然,庄伟.温度和湿度对于P-CNT自感知混凝土压敏性的影响[J/OL].河海大学学报(自然科学版),1-10[2024-05-07].SUN Min, ZHU Haoran, ZHUANG Wei. Effect of temperature and humidity on the pressure sensitivity of P-CNT self-sensing concrete[J]. Journal of Hohai University, 1-10[2024-05-07].(in Chinese)
    [21] Punurai W, Kroehong W, Saptamongkol A, et al. Mechanical properties, microstructure and drying shrinkage of hybrid fly ash-basalt fiber geopolymer paste[J]. Construction and Building Materials, 2018,18662-70.
    [22] 郭凯,马浩辉,杨丰硕,等.冻融循环作用下GO-RC界面过渡区的微观力学性能[J].建筑材料学报,2020,23(01):230-238.GUO Kai, MA Haohui, YANG Fengshuo, et al. Effect of temperature and humidity on the pressure sensitivity of P-CNT self-sensing concrete[J]. Journal of Building Materials, 2020, 23(01): 230-238. (in Chinese)
    [23] 赵康,赵康奇,严雅静,等.纤维含量-浓度效应下尾砂胶结材料受压性能响应[J].采矿与安全工程学报,2024,41(03):579-587.ZHAO Kang, ZHANG Kangqi, YAN Yajing, et al. Response of compressive properties of tailing sand cemented materials under fiber content-concentration effect[J]. Journal of Mining and Safety Engineering, 2024, 41(03): 579-587. (in Chinese)
    [24] Wang Y, Zhang S, Li G, et al. Effects of alkali-treated recycled carbon fiber on the strength and free drying shrinkage of cementitious mortar[J]. Journal of Cleaner Production, 2019,2281187-1195.
    [25] 王艳,全志平,张少辉.回收碳纤维对高强水泥基材料力学性能与导电性能的影响[J].硅酸盐学报,2023,51(05):1332-1343.WANG Yan, QUAN Zhiping, ZHANG Shaohui. Influence of recycled carbon fibers on mechanical properties and electrical conductivity of high-strength cementitious materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(05): 1332-1343. (in Chinese)
    [26] Jia W X, Zhang X, Li M J, et al. Conductivity and conducting stability of copper-coated carbon-fiber-reinforced cement-based composite[J]. Materials Research Express, 2018,5(9):095705-095705.
    [27] Tian Z, Zhang Z, Liu H, et al. Interfacial characteristics and mechanical behaviors of geopolymer binder with steel slag aggregate: Insights from molecular dynamics[J]. Journal of Cleaner Production, 2022, 362: 132385.
    [28] 刘卫森,郭英健,胡捷,等.碳纤维–碱激发砂浆自感知性能[J].硅酸盐学报,2021,49(07):1510-1518.LIU Weisen, GUO Yingjian, HU Jie, et al. Carbon fiber-alkali inspired mortar self-perception properties[J]. Journal of the Chinese Ceramic Society, ,2021, 49(07): 1510-1518. (in Chinese)
    [29] 王艳,张彤昕,郭冰冰,等.回收碳纤维混凝土导电性[J].复合材料学报,2022,39(06):2855-2863.WANG Yan, ZHANG Tongxi, GUO Bingbing, et al. Recycled Carbon Fiber Concrete Conductivity[J]. Library Theory and Practice, 2022, 39(06): 2855-2863. (in Chinese)
    [30] Li H X, Zhao R R, Zhang R J. Research on Tunnel Effect of Carbon Black-Filled Cement-Based Composites[J]. Advanced Materials Research, 2011,1333(284-286):153-156.
    [31] Simmons J G. Electric tunnel effect between dissimilar electrodes separated by a thin insulating film[J]. Journal of applied physics, 1963, 34(9): 2581-2590.
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:54
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-06-27
  • 最后修改日期:2024-09-06
  • 录用日期:2024-11-27
文章二维码