基于定量XRD的碱激发胶凝材料分子模拟
作者单位:

沈阳建筑大学

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Molecular Simulation of Alkali-activated Materials Based on Quantitative XRD
Affiliation:

Shenyang Jianzhu University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • | | | |
  • 文章评论
    摘要:

    碱激发偏高岭土非晶相主要由N-A-S-H构成,碱激发矿渣非晶相主要由C-A-S-H构成.非晶相成分难以通过传统方法进行准确的表征,故较难搭建真实的分子模型.本文提出一种碱激发胶凝材料分子模型搭建方法,采用Rietveld精修和内标法定量XRD分析获得AAMs的晶相成分,与XRF结果对照分析非晶相化学成分,采用XRD分峰法得到AAMs非晶相的近程有序结构,利用Materials studio软件搭建N-A-S-H和C-A-S-H的结构,并通过分子动力学模拟径向分布函数和体积模量进行验证.结果表明:N-A-S-H凝胶的近程有序结构与方钠石接近; C-A-S-H凝胶的近程有序结构与水化钙铝黄长石接近.搭建模型通过径向分布函数与体积模量验证了准确性.

    Abstract:

    The alkali-activated metakaolin amorphous phase is mainly composed of N-A-S-H, and the alkali-activated slag amorphous phase is mainly composed of C-A-S-H. The amorphous phase components are difficult to accurately characterize by traditional methods, so it is difficult to build a real molecular model. This paper proposes a method for building a molecular model of alkali-activated gelling materials. The crystalline phase components of AAMs are obtained by Rietveld refinement and internal standard QXRD analysis. The chemical composition of the amorphous phase is analyzed by comparing with the XRF results. The short-range ordered structure of the amorphous phase of AAMs is obtained by XRD peak separation. The structures of N-A-S-H and C-A-S-H are constructed by Materials studio software, and verified by molecular dynamics simulation of radial distribution function and bulk modulus. The results show that the short-range ordered structure of N-A-S-H gel is close to that of sodalite; the short-range ordered structure of C-A-S-H gel is close to that of katoite. The accuracy of the constructed model is verified by radial distribution function and bulk modulus.

    参考文献
    [1] 丁锐,何月,李星辰.碱激发胶凝材料的研究现状[J].混凝土与水泥制品,2021,(07):7-11.LU Y, LI J, MA Y, et al. A Review of research on life cycle carbon emissions and costs of buildings[J]. Energy Conservation, 2024, 43(01): 122-125. (in Chinese)
    [2] Li N ,Shi C ,Wang Q , et al. Composition design and performance of alkali-activated cements[J]. Materials and Structures, 2017, 50(3): 178.
    [3] Li N ,Shi C ,Zhang Z , et al. A review on mixture design methods for geopolymer concrete[J]. Composites Part B, 2019, 178: 107490, 1-14.
    [4] 宋飞, 韩辉, 秦宏钢, 等. 含非晶相样品的X射线衍射快速定量分析[J]. 湖南科技大学学报(自然科学版),2020,35(2):100-106.SONG F, HAN H, QIN H, et al. Rapid Quantitative Analysis of X-ray Diffraction of Amorphous Phase-containing Samples[J]. Journal of Hunan University of Science and Technology (Natural Science Edition) , 2020, 35(2): 100-106. (in Chinese)
    [5] Guan X, Jiang L, Fan D, et al. Molecular simulations of the structure-property relationships of N-A-S-H gels[J]. Construction and Building Materials, 2022, 329: 127166.
    [6] John S R M, Ahmed M, Wayne H, et al. Computational modeling of shear deformation and failure of nanoscale hydrated calcium silicate hydrate in cement paste: Calcium silicate hydrate Jennite[J]. International Journal of Damage Mechanics, 2016, 25(1): 98-114.
    [7] Gong K, White C E. Predicting CaO-(MgO)-Al2O3-SiO2 glass reactivity in alkaline environments from force field molecular dynamics simulations[J]. Cement and Concrete Research, 2021, 150: 106588.
    [8] Wang J, Xiang L, Ren C, et al. Quantitative determination of quaternary solid waste-based binders and its hydrates by XRD[J]. Construction and Building Materials, 2024, 425: 135888.
    [9] 许闽, 杨克条, 吴和平, 等. 全谱拟合XRD Rietveld-PONKCS法定量分析通用硅酸盐水泥中的矿物组分含量[J]. 水泥, 2020(02):60-65.XU M, YANG K, WU H, et al. Quantitative Analysis of Mineral components in General Portland cement by full Spectrum fitting XRD Rietveld-PONKCS method[J]. Cement, 2020(02): 60-65. (in Chinese)
    [10] 王煜明.非晶体及晶体缺陷的X射线衍射 [M]. 1版. 北京:科学出版社, 1988:26-68.WANG Y. X-ray diffraction of amorphous and crystal defects [M]. Beijing: science Press, 1988: 26-68. (in Chinese)
    [11] Li Y, McCausland P J A, Flemming R L. Best fit for complex peaks (BFCP) in Matlab (super R) for quantitative analysis of in situ 2D X-ray diffraction data and Raman spectra[J]. Computers geosciences, 2020, 144: 104572.
    [12] Deborah G ,Prannoy S ,Burkan O I , et al. Using glass content to determine the reactivity of fly ash for thermodynamic calculations[J]. Cement and Concrete Composites, 2021, 115: 103849.
    [13] Williams R P, Hart R D, van Riessen A. Quantification of the Extent of Reaction of Metakaolin-Based Geopolymers Using X-Ray Diffraction, Scanning Electron Microscopy, and Energy-Dispersive Spectroscopy[J]. Journal of the American Ceramic Society, 2011, 94(8): 2663-2670.
    [14] Davidovits J. Geopolymers and geopolymeric materials[J]. Journal of Thermal Analysis and Calorimetry, 2005, 35(2): 429-441.
    [15] Passaglia, Rinaldi.Katoite. A new member of the Ca3Al2(SiO4)3-Ca3Al2(SiO4)3(OH)12 series and a new nomenclature for the hydrogrossular group of minerals[J]. Bulletin de Mineralogie, 1984: 107(5):605-618.
    [16] 陶文宏,付兴华,孙凤金,等.地聚物胶凝材料性能与聚合机理的研究[J].硅酸盐通报,2008,(04):730-735+739.TAO W, FU X, SUN F, et al. Study on Properties and Mechanism of Geopolymer Cementitious Material[J]. Construction and Building Materials, 2008,(04): 730-735+739. (in Chinese)
    [17] Palomo ,A.,Krivenko , et al. A review on alkaline activation: new analytical perspectives[J]. Materiales de Construccion, 2014, 64(315): e022.
    [18] White C E, Provis J L, Llobet A, et al. Evolution of Local Structure in Geopolymer Gels: An In Situ Neutron Pair Distribution Function Analysis[J]. Journal of the American Ceramic Society, 2011, 94(10): 3532-3539.
    [19] Gong K, White C E. Impact of chemical variability of ground granulated blast-furnace slag on the phase formation in alkali-activated slag pastes[J]. Cement and Concrete Research, 2016, 89: 310-319.
    [20] Hill R. The Elastic Behaviour of a Crystalline Aggregate[J]. Proceedings of the Physical Society. Section A, 1952, 65(5): 349-354.
    [21] Oh E J, Moon J, Mancio M, et al. Bulk modulus of basic sodalite, Na8[AlSiO4]6(OH)2 2H2O, a possible zeolitic precursor in coal-fly-ash-based geopolymers [J]. Cement and Concrete Research, 2010, 41 (1): 107-112.
    [22] Oh E J ,Clark M S ,Monteiro J P .Determination of the bulk modulus of hydroxycancrinite, a possible zeolitic precursor in geopolymers, by high-pressure synchrotron X-ray diffraction[J]. Cement and Concrete Composites, 2011,33(10): 1014-1019.
    [23] Jiawei W ,Zhangli H ,Yang C , et al. Effect of Ca/Si and Al/Si on micromechanical properties of C(-A)-S-H[J]. Cement and Concrete Research, 2022, 157: 106811.
    [24] 邓弘扬. 不同钙硅比C(-A)-S-H结构和性能及其与侵蚀离子相互作用[D]. 武汉:武汉大学, 2020.DENG H, Structure and properties of C-(A)-S-H withdifferent calcium to silicon ratios and theirinteractions with erosion ions[D]. Wuhan: Wuhan University, 2020. (in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:64
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-06-07
  • 最后修改日期:2024-09-09
  • 录用日期:2024-09-10
文章二维码