干湿交替作用下裂缝非贯通的混凝土结构氯离子传输行为研究
作者:
作者单位:

1.长沙理工大学 土木工程学院;2.长沙理工大学 土木工程学院 湖南长沙;3.湖南省第六工程有限公司 湖南 长沙;4.湖南省第六工程有限公司

中图分类号:

TU528.01

基金项目:

国家自然科学(52078056、52378125和52208166);国家重点研发计划项目(2021YFB2600900);湖南省研究生科研创新重点项目(CX20220853)


Study on Chloride Transport Behavior in Concrete Structures with Non-penetrating Cracks under Drying-wetting Cycles
Author:
Affiliation:

1.School of Civil Engineering,Changsha University of Science and Technology;2.Hunan No.6 Engineering Co,Ltd;3.Hunan No Engineering Co,Ltd

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    对于沿海地区带裂缝损伤的在役钢筋混凝土结构,其在干湿交替作用下的氯离子扩散性能对于结构的耐久性设计和评估至关重要。为此,本文通过拉普拉斯变换方法,建立了干湿交替作用下裂缝非贯通的混凝土结构中氯离子对流扩散理论模型。随后,开展了带裂缝混凝土结构在干湿交替作用下的氯离子传输试验,分析了裂缝宽度和裂缝深度对氯离子分布规律的影响,并对不同裂缝特征下表面氯离子含量及对流区深度分布进行了统计。最后,对理论模型进行了验证。研究表明,表面氯离子含量与裂缝宽度呈线性关系,且随着裂缝深度增加,其线性斜率增大。在裂缝深度为40mm、60mm和80mm处,裂缝宽度与对流区深度的函数关系分别为二次函数、线性函数和对数函数。相比于现有的理论模型,本文理论模型精度提高了35%,验证了本文理论模型的正确性。

    Abstract:

    For the existing reinforced concrete structures with crack damage in coastal areas, its chloride diffusion performance under drying-wetting cycles is very important for the durability design and evaluation of the structure. In this paper, a theoretical model of chloride convection-diffusion in concrete structures with non-penetrating cracks under drying-wetting cycles was established by Laplace transform method in this paper. Subsequently, the chloride transport experiments were conducted on cracked concrete structure under the action of drying-wetting cycles. The influence of crack width and crack depth on the distribution pattern of chloride ions was analyzed. Statistical analyses were performed on the surface chloride content and the depth distribution of the convective zone under different crack characteristics. Finally, the theoretical model was validated. The results show that there is a linear relationship between surface chloride content and crack width, and its linear slope increases with the increase of crack depth. When the crack depth is 40mm, 60mm and 80mm, the functional relationship between the crack width and the depth of the convection zone is quadratic function, linear function and logarithmic function respectively. Compared to existing theoretical models, the accuracy of the theoretical model proposed in this study has been improved by 11%, thereby validating its correctness.

    参考文献
    [1] Ismail M, Toumi A, Fran?ois R, et al. Effect of crack opening on the local diffusion of chloride in cracked mortar samples[J]. Cement and Concrete Research, 2008, 38(8-9):1106-1111.
    [2] 童良玉, 刘清风. 考虑多尺度非均质性的混凝土传输性能预测模型[J]. 建筑材料学报, 2023, 26(10):1062-1071.TONG Liangyu, LIU Qingfeng. Modelling of concrete transport property by considering multi-scale heterogeneous characteristics[J]. Journal of Building Materials, 2023, 26(10):1062-1071.
    [3] Ye H L, Jin N G, Jin X Y, et al. Model of chloride penetration into cracked concrete subject to drying–wetting cycles[J]. Construction and Building Materials, 2012, 36:259-269.
    [4] Lu C H, Li H, Liu R G. Chloride transport in cracked RC beams under dry–wet cycles[J]. Magazine of Concrete Research, 2017, 69(9):1-14.
    [5] Yang L, Gao D Y, Zhang Y S, et al. Study on water and chloride transport in cracked mortar using X-ray CT, gravimetric method and natural immersion method[J]. Construction and Building Materials, 2018, 176:652-664.
    [6] 延永东, 金伟良, 王海龙, 等. 干湿交替作用下氯离子在开裂混凝土中的输运规律[J]. 中南大学学报(自然科学版), 2013, 44(05):2060-2067.YAN Yongdong, JIN Weiliang, WANG Hailong, et al. Chloride transport in cracked concrete under wet-dry cycling condition[J]. Journal of Central South University (Science and Technology), 2013, 44(05):2060-2067 (in Chinese)
    [7] 蔡渝新, 刘清风. 碱激发混凝土抗氯离子侵蚀性能的数值研究[J]. 建筑材料学报, 2023, 26(06):596-603+622.CAI Yuxin, LIU Qingfeng. Numerical estimation on chloride erosion resistance of alkali-activated concrete[J]. Journal of Building Materials, 2023, 26(06):596-603+622. (in Chinese)
    [8] Peng J X, Hu S W, Zhang J R, et al. Influence of cracks on chloride diffusivity in concrete: A five-phase mesoscale model approach[J]. Construction and Building Materials, 2019, 197:587-596.
    [9] Wang L, Dai L Z, Bian H B, et al. Concrete cracking prediction under combined prestress and strand corrosion[J]. Structure and Infrastructure Engineering, 2019, 15:285-295.
    [10] Sun C T, Yuan L Q, Zhai X F, et al. Numerical and experimental study of moisture and chloride transport in unsaturated concrete[J]. Construction and Building Materials, 2018, 189(20):1067-1075.
    [11] 蔡栋兴, 毕文彦, 管学茂. 粗骨料对混凝土氯离子扩散影响的模拟与试验[J]. 建筑材料学报, 2023, 26(4):383-388.CAI Dongxing, BI Wenyan, GUAN Xuemao. Simulation and experiments of the effect of coarse aggregates on the diffusion of chloride ions in concrete[J]. Journal of Building Materials, 2023, 26(4):383-388.(in Chinese)
    [12] Li W J, Guo L. A mechanical-diffusive peridynamics coupling model for meso-scale simulation of chloride penetration in concrete under loadings[J]. Construction and Building Materials, 2020, 241:118021.
    [13] Costa A D, Fenaux M, Fernández J, et al. Modelling of chloride penetration into non-saturated concrete: case study application for real marine offshore structures[J]. Construction and Building Materials, 2013, 43:217–224.
    [14] Guan B W, Wu J Y, Yang T, et al. Developing a model for chloride ions transport in cement concrete under dynamic flexural loading and dry-wet cycles[J]. Mathematical Problems in Engineering, 2017, 1:5760512.
    [15] Cao T N, Zhang L J, Sun G W, et al. Simulation of chloride ion transport in concrete under the coupled effects of a bending load and drying–wetting cycles[J]. Construction and Building Materials, 2020, 241:118045.
    [16] Chen D S, Yang K K, Hu D L, et al. A meso-stochastic research on the chloride transport in unsaturated concrete[J]. Construction and Building Materials, 2021, 273:121986.
    [17] Zhang T, Guo Q X. The finite difference/finite volume method for solving the fractional diffusion equation[J]. Journal of Computational Physics, 2018, 375:120-134.
    [18] Petcherdchoo A. Closed-form solutions for modeling chloride transport in unsaturated concrete under wet-dry cycles of chloride attack[J]. Construction and Building Materials, 2018, 176:638-651.
    [19] Corinthios M J. Complex-variable distribution theory for Laplace and z transforms[J]. IEE Proceedings-Vision, Image and Signal Processing, 2005, 152(1): 97-106.
    [20] Olson D R. A series approximation to the Kirchhoff integral for Gaussian and exponential roughness covariance functions[J]. The Journal of the Acoustical Society of America, 2021, 149(6): 4239-4247.
    [21] Gupta S, Kumar D, Singh J. Analytical solutions of convection–diffusion problems by combining Laplace transform method and homotopy perturbation method[J]. Alexandria Engineering Journal, 2015, 54(3): 645-651.
    [22] Bai Y, Wang Y, Xi Y P. Modeling the effect of temperature gradient on moisture and ionic transport in concrete[J]. Cement and Concrete Composites, 2020, 106:103454.
    [23] Dingfelder B, Weideman J A C. An improved Talbot method for numerical Laplace transform inversion[J]. Numerical Algorithms, 2015, 68(1): 167-183.
    [24] Chen D S, Yang K K, Hu D L, et al. A meso-stochastic research on the chloride transport in unsaturated concrete[J]. Construction and Building Materials, 2021, 273: 121986.
    [25] 金浏, 杜修力, 李悦. 氯离子在饱和混凝土裂缝中的扩散系数分析[J]. 工程力学, 2016, 33(05):50-56+73.JIN Liu, DU Xiuli, LI Rui. Study on chloride diffusivity coefficient in cracks within saturated concrete[J]. Engineering Mechanics, 2016, 33(05):50-56+73. (in Chinese)
    [26] Wang K, Jansen D C, Shah S P. Permeability study of cracked concrete [J]. Cement and Concrete Research, 1997, 27(3): 381―193.
    [27] Aldea C M, Shah S P, Karr A. Effect of cracking on water and chloride permeability of concrete[J]. Journal of materials in civil engineering, 1999, 11(3): 181-187.
    [28] Wang L C, Bao J W, Ueda T. Prediction of mass transport in cracked-unsaturated concrete by mesoscale lattice model[J]. Ocean Engineering, 2016, 127: 144-157.
    [29] Baroghel-Bouny V, Mainguy M, Lassabatere T, et al. Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials[J]. Cement and concrete research, 1999, 29(8): 1225-1238.
    [30] Chen C H, Wang L, Liu R G, et al. Chloride penetration of concrete exposed to dry-wet cycle with various dry-wet ratios and temperature[J]. Construction and Building Materials, 2023, 400: 132883.
    [31] Wang K, Guo J J, Wu H, et al. Influence of dry-wet ratio on properties and microstructure of concrete under sulfate attack[J]. Construction and Building Materials, 2020, 263: 120635.
    [32] Wang Y, Guo S, Yan B, et al. Experimental and analytical investigation on chloride ions transport in concrete considering the effect of dry-exposure ratio under diurnal tidal environment[J]. Construction and Building Materials, 2022, 328: 127138.
    [33] Wang Q N, Zhang G S, Tong Y Y, et al. A numerical study on chloride diffusion in cracked concrete[J]. Crystals, 2021, 11(7): 742.
    [34] Zhao K Y, Qiao Y, Zhang P, et al. Experimental and numerical study on chloride transport in cement mortar during drying process[J]. Construction and Building Materials, 2020, 258: 119655.
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:68
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-06-05
  • 最后修改日期:2024-09-09
  • 录用日期:2024-09-09
文章二维码