高延性天然水硬性石灰基材料的力学性能
作者:
作者单位:

1.中国矿业大学(北京) 力学与土木工程学院,北京 100083;2.中国矿业大学(北京) 化学与环境工程学院,北京 100083

作者简介:

王振波(1989—),男,江苏徐州人,中国矿业大学(北京)副教授,硕士生导师,博士.E-mail:wangzb@cumtb.edu.cn

通讯作者:

王栋民(1965—),男,山西朔州人,中国矿业大学(北京)教授,博士生导师,博士.E-mail:wangdongmin-2008@163.com

中图分类号:

TU528.58

基金项目:

国家自然科学基金资助项目(51808545,52072404);北京市自然科学基金资助项目(2222073);中央高校基本科研业务费专项资金资助项目(2023ZKPYLJ05)


Mechanical Properties of Natural Hydraulic Lime Based Materials with High Ductility
Author:
Affiliation:

1.School of Mechanics and Civil Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China;2.School of Chemical and Environmental Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    以天然水硬性石灰和偏高岭土为复合胶凝材料,掺加聚乙烯醇(PVA)纤维、聚乙烯(PE)纤维或玄武岩(BF)纤维,制备了高延性天然水硬性石灰基材料,并研究了其抗压、轴拉力学性能、裂缝控制能力和纤维增强增韧机理. 结果表明:PVA、PE纤维与石英砂或石灰石砂组合均可使水硬性石灰表现出优异的应变硬化和饱和多缝开裂特征,显著提高材料的拉伸强度和极限拉伸应变;PE纤维和石灰石砂组合使材料极限拉伸应变提高至5.604%,PVA纤维和石英砂及石灰石砂组合使材料极限拉伸应变提高至4.000%以上;PVA、PE纤维均可将裂缝宽度控制在100 μm以下,材料在获取超高变形能力的同时具备良好的裂缝控制能力.

    Abstract:

    The natural hydraulic lime and metakaolin as composite cementitious materials, polyvinyl alcohol (PVA) fibers, polyethylene (PE) fibers, or basalt (BF) fibers were incorporated to prepare the high ductility natural hydraulic lime based materials. The compressive and axial tensile properties, crack control abilities, and the reinforcing and toughening mechanisms of the fibers were experimentally investigated. The results show that the combination of PVA or PE fibers with quartz sand or limestone sand endows the natural hydraulic lime with excellent strain-hardening and saturated multiple-cracking characteristics, and significantly enhances the tensile strength and ultimate tensile strain of materials. The combination of PE fibers and limestone sand increases the ductility materials up to 5.604%, while the joint use of PVA fibers and quartz sand or limestone sand makes the ultimate tensile strain materials increased to more than 4.000%. Both PVA and PE fibers can control the crack width to below 100 μm, adding excellent crack control abilities as well as ultra-high deformation capacity of lime based materials.

    图1 胶凝材料的XRD图谱Fig.1 XRD patterns of binders
    图2 细骨料的光学显微镜照片Fig.2 Optical microscope images of fine aggregates
    图3 试件的受压破坏形态Fig.3 Compression failure modes of specimens
    图4 各组试件的抗压强度及其比值Fig.4 Compressive strength and its ratio of specimens
    图5 试件的拉伸应力-应变曲线Fig.5 Tensile stress-strain curves of specimen
    图6 试件的开裂形态图Fig.6 Crack morphology diagrams of specimens
    图7 试件的平均裂纹间距和宽度Fig.7 Mean crack spacing and width of specimens
    图8 试件拉伸断面的SEM照片Fig.8 SEM images of tensile crack plane of specimens
    表 1 胶凝材料的化学组成Table 1 Chemical composition(by mass) of binders
    表 2 纤维的物理力学性能参数Table 2 Physical and mechanical properties parameters of fibers
    表 3 试件的配合比Table 3 Mix proportions(by mass) of specimens Unit:%
    表 4 掺纤维试件的28 d抗拉力学参数Table 4 Uniaxial tensile properties of specimens incorporating fibers
    图1 胶凝材料的XRD图谱Fig.1 XRD patterns of binders
    图2 细骨料的光学显微镜照片Fig.2 Optical microscope images of fine aggregates
    图3 试件的受压破坏形态Fig.3 Compression failure modes of specimens
    图4 各组试件的抗压强度及其比值Fig.4 Compressive strength and its ratio of specimens
    图5 试件的拉伸应力-应变曲线Fig.5 Tensile stress-strain curves of specimen
    图6 试件的开裂形态图Fig.6 Crack morphology diagrams of specimens
    图7 试件的平均裂纹间距和宽度Fig.7 Mean crack spacing and width of specimens
    图8 试件拉伸断面的SEM照片Fig.8 SEM images of tensile crack plane of specimens
    表 1 胶凝材料的化学组成Table 1 Chemical composition(by mass) of binders
    表 2 纤维的物理力学性能参数Table 2 Physical and mechanical properties parameters of fibers
    表 3 试件的配合比Table 3 Mix proportions(by mass) of specimens Unit:%
    表 4 掺纤维试件的28 d抗拉力学参数Table 4 Uniaxial tensile properties of specimens incorporating fibers
    参考文献
    相似文献
    引证文献
引用本文

王振波,孟凡超,刘泽,王栋民,齐国栋.高延性天然水硬性石灰基材料的力学性能[J].建筑材料学报,2024,27(12):1143-1151

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-31
  • 最后修改日期:2024-07-10
  • 在线发布日期: 2025-01-21
文章二维码