高延性天然水硬性石灰基材料的力学性能
作者:
作者单位:

1.中国矿业大学(北京) 力学与土木工程学院,北京 100083;2.中国矿业大学(北京) 化学与环境工程学院,北京 100083

作者简介:

王振波(1989—),男,江苏徐州人,中国矿业大学(北京)副教授,硕士生导师,博士.E-mail:wangzb@cumtb.edu.cn

通讯作者:

王栋民(1965—),男,山西朔州人,中国矿业大学(北京)教授,博士生导师,博士.E-mail:wangdongmin-2008@163.com

中图分类号:

TU528.58

基金项目:

国家自然科学基金资助项目(51808545,52072404);北京市自然科学基金资助项目(2222073);中央高校基本科研业务费专项资金资助项目(2023ZKPYLJ05)


Mechanical Properties of Natural Hydraulic Lime Based Materials with High Ductility
Author:
Affiliation:

1.School of Mechanics and Civil Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China;2.School of Chemical and Environmental Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    以天然水硬性石灰和偏高岭土为复合胶凝材料,掺加聚乙烯醇(PVA)纤维、聚乙烯(PE)纤维或玄武岩(BF)纤维,制备了高延性天然水硬性石灰基材料,并研究了其抗压、轴拉力学性能、裂缝控制能力和纤维增强增韧机理. 结果表明:PVA、PE纤维与石英砂或石灰石砂组合均可使水硬性石灰表现出优异的应变硬化和饱和多缝开裂特征,显著提高材料的拉伸强度和极限拉伸应变;PE纤维和石灰石砂组合使材料极限拉伸应变提高至5.604%,PVA纤维和石英砂及石灰石砂组合使材料极限拉伸应变提高至4.000%以上;PVA、PE纤维均可将裂缝宽度控制在100 μm以下,材料在获取超高变形能力的同时具备良好的裂缝控制能力.

    Abstract:

    The natural hydraulic lime and metakaolin as composite cementitious materials, polyvinyl alcohol (PVA) fibers, polyethylene (PE) fibers, or basalt (BF) fibers were incorporated to prepare the high ductility natural hydraulic lime based materials. The compressive and axial tensile properties, crack control abilities, and the reinforcing and toughening mechanisms of the fibers were experimentally investigated. The results show that the combination of PVA or PE fibers with quartz sand or limestone sand endows the natural hydraulic lime with excellent strain-hardening and saturated multiple-cracking characteristics, and significantly enhances the tensile strength and ultimate tensile strain of materials. The combination of PE fibers and limestone sand increases the ductility materials up to 5.604%, while the joint use of PVA fibers and quartz sand or limestone sand makes the ultimate tensile strain materials increased to more than 4.000%. Both PVA and PE fibers can control the crack width to below 100 μm, adding excellent crack control abilities as well as ultra-high deformation capacity of lime based materials.

    图1 胶凝材料的XRD图谱Fig.1 XRD patterns of binders
    图2 细骨料的光学显微镜照片Fig.2 Optical microscope images of fine aggregates
    图3 试件的受压破坏形态Fig.3 Compression failure modes of specimens
    图4 各组试件的抗压强度及其比值Fig.4 Compressive strength and its ratio of specimens
    图5 试件的拉伸应力-应变曲线Fig.5 Tensile stress-strain curves of specimen
    图6 试件的开裂形态图Fig.6 Crack morphology diagrams of specimens
    图7 试件的平均裂纹间距和宽度Fig.7 Mean crack spacing and width of specimens
    图8 试件拉伸断面的SEM照片Fig.8 SEM images of tensile crack plane of specimens
    表 1 胶凝材料的化学组成Table 1 Chemical composition(by mass) of binders
    表 2 纤维的物理力学性能参数Table 2 Physical and mechanical properties parameters of fibers
    表 3 试件的配合比Table 3 Mix proportions(by mass) of specimens Unit:%
    表 4 掺纤维试件的28 d抗拉力学参数Table 4 Uniaxial tensile properties of specimens incorporating fibers
    图1 胶凝材料的XRD图谱Fig.1 XRD patterns of binders
    图2 细骨料的光学显微镜照片Fig.2 Optical microscope images of fine aggregates
    图3 试件的受压破坏形态Fig.3 Compression failure modes of specimens
    图4 各组试件的抗压强度及其比值Fig.4 Compressive strength and its ratio of specimens
    图5 试件的拉伸应力-应变曲线Fig.5 Tensile stress-strain curves of specimen
    图6 试件的开裂形态图Fig.6 Crack morphology diagrams of specimens
    图7 试件的平均裂纹间距和宽度Fig.7 Mean crack spacing and width of specimens
    图8 试件拉伸断面的SEM照片Fig.8 SEM images of tensile crack plane of specimens
    表 1 胶凝材料的化学组成Table 1 Chemical composition(by mass) of binders
    表 2 纤维的物理力学性能参数Table 2 Physical and mechanical properties parameters of fibers
    表 3 试件的配合比Table 3 Mix proportions(by mass) of specimens Unit:%
    表 4 掺纤维试件的28 d抗拉力学参数Table 4 Uniaxial tensile properties of specimens incorporating fibers
    参考文献
    [1] 许军.古建筑修缮过程中提高文物建筑保护与利用的技术研究[J].收藏,2023(1):169-172.XU Jun. Research on the technology of improving the protection and utilization of cultural relics in the process of ancient building repair [J]. Collections, 2023(1):169-172.(in Chinese)
    [2] 兰明章,聂松,王剑锋,等.古建筑修复用石灰基砂浆的研究进展[J].材料导报,2019,33(9):1512-1516.LAN Mingzhang, NIE Song, WANG Jianfeng, et al. A state-of-the-art review on lime-based mortars for restoration of ancient buildings[J]. Materials Review, 2019,33(9):1512-1516. (in Chinese)
    [3] 徐树强,马清林.文物建筑修复用天然水硬性石灰基砂浆的研究进展[J].石窟与土遗址保护研究,2022,1(2):81-92.XU Shuqiang, MA Qinglin. Research progress of natural hydraulic lime based mortar for restoration of cultural relics buildings [J]. Research on the Conservation of Cave Temples and Earthen Sites, 2022,1(2):81-92. (in Chinese)
    [4] LUO K, LI J, LU Z Y, et al. Effect of nano-SiO2 on early hydration of natural hydraulic lime [J]. Construction and Building Materials,2019,216:119-127. (in Chinese)
    [5] 顾立龙,商怀帅,吴亚月,等.偏高岭土在人造水硬性石灰修复砂浆中的应用研究[J].硅酸盐通报,2023,42(12):4351-4359,4367.GU Lilong, SHANG Huaishuai, WU Yayue, et al. Application of metakaolin in artificial hydraulic lime repair mortar[J]. Bulletin of the Chinese Ceramic Society, 2023,42(12):4351-4359,4367. (in Chinese)
    [6] 李新明,武迪,张浩扬,等.酸环境下石灰-偏高岭土改性遗址土的强度及色差分析[J].建筑材料学报,2023,26(7):783-791.LI Xinming, WU Di, ZHANG Haoyang, et al. Strength and color difference analysis of lime-metakaolin modified site soil in acidic environment[J]. Journal of Building Materials, 2023,26(7):783-791. (in Chinese)
    [7] 许栋,张大江,王栋民,等.矿粉/偏高岭土对天然水硬性石灰早期性能的影响[J].矿业科学学报,2022,7(5):632-642.XU Dong, ZHANG Dajiang, WANG Dongmin, et al. Effects of slag powder/metakaolin on the early performance of natural hydraulic lime[J]. Journal of Mining Science and Technology,2022,7(5):632-642. (in Chinese)
    [8] SANTARELLI L M,SBARDELLA F,ZUENA M, et al. Basalt fiber reinforced natural hydraulic lime mortars:A potential bio-based material for restoration[J]. Materials and Design,2014,63,398-406.
    [9] 卢喆,姚文娟,王社良,等.复掺天然植物油与青麻纤维对古建筑修复灰浆抗盐冻性能的影响[J].材料导报,2023,37(12):22010153.LU Zhe, YAO Wenjuan, WANG Sheliang, et al. Effect of blending natural plant oil and hemp fiber on salt frost resistance of ancient building restoration mortar[J]. Materials Reports,2023,37(12):22010153. (in Chinese)
    [10] BARBERO-BARRERA M M ,MEDINA F N .The effect of polypropylene fibers on graphite-natural hydraulic lime pastes[J].Construction and Building Materials,2018,184:591-601.
    [11] 姚淇耀,陆宸宇,罗月静,等.PE/PVA纤维海砂ECC的拉伸性能与本构模型[J].建筑材料学报,2022,25(9):976-983.YAO Qiyao, LU Chenyu, LUO Yuejing, et al. Tensile properties and constitutive model of PE/PVA fiber sea sand ECC[J]. Journal of Building Materials,2022,25(9):976-983. (in Chinese)
    [12] 韩宇栋,刘畅,王振波,等.硫酸盐干湿循环下ECC的轴压力学行为[J].建筑材料学报,2020,23(4):846-851.HAN Yudong, LIU Chang, WANG Zhenbo, et al. Uniaxial compressive behavior of ECC sulfate erosion in drying wetting cycles[J].Journal of Building Materials,2020,23(4):846-851. (in Chinese)
    [13] 郭伟娜,张鹏,鲍玖文,等.粉煤灰掺量对应变硬化水泥基复合材料力学性能及损伤特征的影响[J].建筑材料学报,2022,25(6):551-557.GUO Weina, ZHANG Peng, BAO Jiuwen, et al. Effect of fly ash content on mechanical properties and damage characteristics of strain-hardening cementitious composites[J].Journal of Building Materials, 2022,25(6):551-557. (in Chinese)
    [14] 杨曌,钟奕岚,杨智,等.SMA/PVA混杂纤维增强水泥基复合材料拉伸性能[J].建筑材料学报,2023,26(5):555-562.YANG Zhao, ZHONG Yilan, YANG Zhi, et al. Tensile properties of SMA/PVA hybrid fiber reinforced cementitious composites[J].Journal of Building Materials, 2023,26(5):555-562. (in Chinese)
    [15] 王振波,范雨润,左建平.温度和骨料预湿对煤矸石砂浆流变性的影响[J].矿业科学学报,2024,9(2):190-198.WANG Zhenbo, FAN Yurun, ZUO Jianping. The impact of temperature and pre-wetting of aggregates on rheological properties of coal gangue mortars[J]. Journal of Mining Science and Technology, 2024,9(2):190-198. (in Chinese)
    [16] 夏求林,吕兴栋,李平刚,等.PVA纤维、减缩剂和轻烧氧化镁对水工衬砌混凝土性能影响对比研究[J].水利水电技术,2024,55(增刊1):429-433.XIA Qiulin, Xingdong LÜ, LI Pinggang, et al. Comparative study on the effects of PVA fiber, shrinkage reducing agent and light-fired magnesium oxide on the properties of hydraulic lining concrete[J]. Water Resources and Hydropower Engineering, 2024, 55(Suppl 1):429-433. (in Chinese)
    [17] 王振波.聚乙烯醇-钢纤维混杂增强水泥基复合材料力学性能研究[D].北京:清华大学,2016.WANG Zhenbo. Studies on mechanical performance of polyvinyl alcohol-steel hybrid fiber reinforced cementitious composites[D] . Beijing:Tsinghua University,2016. (in Chinese)
    [18] 王振波,王鹏宇,孙鹏.高延性水泥基材料纤维分布及其影响因素研究进展[J].硅酸盐学报,2022,50(8):2284-2295.WANG Zhenbo, WANG Pengyu, SUN Peng. Review on fiber distribution effect on engineered cementitious composites[J]. Journal of the Chinese Ceramic Society, 2022,50(8):2284-2295. (in Chinese)
    [19] 王振波,张君,王庆.混杂纤维增强延性水泥基复合材料力学性能与裂宽控制[J].建筑材料学报,2018,21(2):216-221,227.WANG Zhenbo, ZHANG Jun, WANG Qing. Mechanical behavior and crack width control of hybrid fiber reinforced ductile cementitious composites[J]. Journal of Building Materials, 2018,21(2):216-221,227. (in Chinese)
    [20] ŞAHMARAN M ,LI C V .Durability properties of micro-cracked ECC containing high volumes fly ash[J].Cement and Concrete Research,2009,39(11):1033-1043.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王振波,孟凡超,刘泽,王栋民,齐国栋.高延性天然水硬性石灰基材料的力学性能[J].建筑材料学报,2024,27(12):1143-1151

复制
分享
文章指标
  • 点击次数:107
  • 下载次数: 243
  • HTML阅读次数: 5
  • 引用次数: 0
历史
  • 收稿日期:2024-05-31
  • 最后修改日期:2024-07-10
  • 在线发布日期: 2025-01-21
文章二维码