水化硅酸钙微纳结构及超低温稳定性研究进展
作者:
作者单位:

1.同济大学 先进土木工程材料教育部重点实验室,上海 201804;2.同济大学 材料科学与工程学院,上海 201804

作者简介:

朱新平(1993—),男,江西赣州人,同济大学博士生.E-mail:rainchal@163.com

通讯作者:

蒋正武(1974—),男,安徽潜山人,同济大学教授,博士生导师,博士.E-mail:jzhw@tongji.edu.cn

中图分类号:

TU528

基金项目:

国家自然科学基金资助项目(U22B2076,52078369,52108241);2021年产业技术基础公共服务平台项目(2021-H029-1-1);上海市优秀学术带头人计划资助项目(22XD1403300);中央高校基本科研业务费专项资金资助项目


Research Progress on Micro/Nano-structure and Cryogenic Stability of Calcium-Silicate-Hydrate
Author:
Affiliation:

1.Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 201804, China;2.School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [50]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    水化硅酸钙(C-S-H)作为普通硅酸盐水泥的主要水化产物,其微纳结构的稳定性对水泥基材料的强度与耐久性具有显著影响.本文综述了C-S-H分子结构和胶体结构在近几十年来的主要研究进展,进一步概述了C-S-H在超低温环境下的微纳结构稳定性、纳米力学性质稳定性及增强策略的相关研究进展,探讨了目前超低温环境下C-S-H结构研究中存在的关键问题,并对未来进一步的研究方向提出展望.

    Abstract:

    The stability of the micro/nano-structure of calcium-silicate-hydrate(C-S-H), as the main hydration product of ordinary silicate cement, significantly impacts the strength and durability of cement-based materials.The research progress of C-S-H molecular and colloidal structures in recent decades was reviewed, and the related research progress of micro/nano-structural stability, nano-mechanical property stability, and enhancement strategies of C-S-H under cryogenic environment were further outlined. Several critical issues in the current research of C-S-H structure under cryogenic environments were discussed, and an outlook on further research in this domain was proposed.

    图1 托贝莫来石晶体结构Fig.1 Crystalline structures of tobermotire[12]
    图2 C-S-H硅氧链原子结构Fig.2 Atomistic structure of C-S-H silicate chain[20]
    图3 C-A-S-H 的交联和非交联结构Fig.3 Crosslinked and non-crosslinked structures of C-A-S-H
    图4 C-A-S-H内桥接及层间铝酸盐配合物原子结构Fig.4 Atomistic representations of bridging and interlayer aluminates in C-A-S-H
    图5 C-A-S-H砖块模型的DNA编码示例Fig.5 Examples for the DNA-code description of C-A-S-H brick model[29]
    图6 C-S-H的胶体结构模型Fig.6 Colloidal structure models of C-S-H
    图7 胶体模型示意图Fig.7 Schematic diagrams of colloidal models
    图8 C-(A)-S-H在超低温侵蚀下自下而上的多尺度劣化路径Fig.8 Upscaling degradation pathway of C-(A)-S-Hunder cryogenic attack[44]
    图9 C-(A)-S-H基本胶粒单元在超低温侵蚀下的演变示意图Fig.9 Schematic diagrams of evolution C-(A)-S-H basic colloidal particle units under cryogenic attack
    图1 托贝莫来石晶体结构Fig.1 Crystalline structures of tobermotire[12]
    图2 C-S-H硅氧链原子结构Fig.2 Atomistic structure of C-S-H silicate chain[20]
    图3 C-A-S-H 的交联和非交联结构Fig.3 Crosslinked and non-crosslinked structures of C-A-S-H
    图4 C-A-S-H内桥接及层间铝酸盐配合物原子结构Fig.4 Atomistic representations of bridging and interlayer aluminates in C-A-S-H
    图5 C-A-S-H砖块模型的DNA编码示例Fig.5 Examples for the DNA-code description of C-A-S-H brick model[29]
    图6 C-S-H的胶体结构模型Fig.6 Colloidal structure models of C-S-H
    图7 胶体模型示意图Fig.7 Schematic diagrams of colloidal models
    图8 C-(A)-S-H在超低温侵蚀下自下而上的多尺度劣化路径Fig.8 Upscaling degradation pathway of C-(A)-S-Hunder cryogenic attack[44]
    图9 C-(A)-S-H基本胶粒单元在超低温侵蚀下的演变示意图Fig.9 Schematic diagrams of evolution C-(A)-S-H basic colloidal particle units under cryogenic attack
    参考文献
    [1] 艾金华, 何倍, 张翼, 等. 超低温作用下UHPC受弯力学行为及其本构关系 [J]. 建筑材料学报, 2024, 27(1):23-29.AI Jinhua, HE Bei, ZHANG Yi, et al. Flexural behaviour and constitutive correlation of UHPC at cryogenic temperatures [J]. Journal of Building Materials, 2024, 27(1):23-29. (in Chinese)
    [2] 钱维民, 苏骏, 赵家玉, 等. 超低温作用对超高韧性水泥基复合材料断裂性能的影响 [J]. 建筑材料学报, 2022, 25(9):901-909, 916.QIAN Weimin, SU Jun, ZHAO Jiayu, et al. Effect of ultra-low temperature on fracture behavior of ultra-high toughness cementitious composites [J]. Journal of Building Materials, 2022, 25(9):901-909, 916. (in Chinese)
    [3] LIU L, YE G, SCHLANGEN E, et al. Modeling of the internal damage of saturated cement paste due to ice crystallization pressure during freezing [J]. Cement and Concrete Composites, 2011, 33(5):562-571.
    [4] 汪林萍, 杨全兵. NaCl-MgCl复合除冰盐对混凝土盐冻破坏的影响及其作用机理 [J]. 建筑材料学报, 2023, 26(2):129-136.WANG Linping, YANG Quanbing. Effect and mechanism of NaCl-MgCl2 compounded deicing salt on the salt-frost scaling of concrete [J]. Journal of Building Materials, 2023, 26(2):129-136. (in Chinese)
    [5] ZHU X P, VANDAMME M, JIANG Z W, et al. Molecular simulation of the confined crystallization of ice in cement nanopore [J]. The Journal of Chemical Physics, 2023, 159(15):154704.
    [6] ZHU X P, BROCHARD L, JIANG Z W, et al. Molecular simulations of premelted films between C-S-H and ice:Implication for cryo-suction in cement-based materials [J]. Cement and Concrete Research, 2023, 174:107341.
    [7] 陈波, 袁志颖, 陈家林, 等. 冻融循环后蒸汽养护混凝土的损伤-声发射特性 [J]. 建筑材料学报, 2024, 26(2):143-149.CHEN Bo, YUANG Zhiying, CHEN Jialin, et al. Damage-acoustic emission characteristics of steam-cured concrete after freeze-thaw cycles [J]. Journal of Building Materials, 2024, 26(2):143-149. (in Chinese)
    [8] MARSHALL A L. Cryogenic concrete [J]. Cryogenics, 1982, 22(11):555-565.
    [9] GALLUCCI E, ZHANG X, SCRIVENER K L. Effect of temperature on the microstructure of calcium silicate hydrate (C-S-H) [J]. Cement and Concrete Research, 2013, 53:185-195.
    [10] RICHARDSON I G, GROVES G W. Microstructure and microanalysis of hardened ordinary Portland-cement pastes [J]. Journal of Materials Science, 1993, 28(1):265-277.
    [11] RICHARDSON I G. The nature of C-S-H in hardened cements [J]. Cement and Concrete Research, 1999, 29(8):1131-1147.
    [12] DUQUE-REDONDO E, BONNAUD P A, MANZANO H. A comprehensive review of C-S-H empirical and computational models, their applications, and practical aspects [J]. Cement and Concrete Research, 2022, 156:106784.
    [13] HAMID S A. The crystal structure of the 11 Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5]·1H2O[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 1981, 154:189-198.
    [14] MERLINO S, BONACCORSI E, ARMBRUSTER T. The real structure of tobermorite 11 Å:Normal and anomalous forms, OD character and polytypic modifications[J]. European Journal of Mineralogy, 2001, 13(3):577-590.
    [15] KUNHI M A, MOUTZOURI P, BERRUYER P, et al. The atomic-level structure of cementitious calcium aluminate silicate hydrate [J]. Journal of the American Chemical Society, 2020, 142(25):11060-11071.
    [16] TAYLOR H F W. Proposed structure for calcium silicate hydrate gel [J]. Journal of the American Ceramic Society, 1986, 69(6):464-467.
    [17] RICHARDSON I G, GROVES G W. Models for the composition and structure of calcium silicate hydrate(C-S-H) gel in hardened tricalcium silicate pastes [J]. Cement and Concrete Research, 1992, 22(6):1001-1010.
    [18] ABDOLHOSSEINI Q M J, KRAKOWIAK K J, BAUCHY M, et al. Combinatorial molecular optimization of cement hydrates [J]. Nature Communications, 2014, 5:4960.
    [19] ZHU X P, BROCHARD L, VANDAMME M, et al. Scaling of nanoscale elastic and tensile failure properties of cementitious calcium-silicate-hydrate materials at cryogenic temperatures:A molecular simulation study [J]. Cement and Concrete Research, 2023, 172:107242.
    [20] GUO X L, SONG M. Micro-nanostructures of tobermorite hydrothermal-synthesized from fly ash and municipal solid waste incineration fly ash [J]. Construction and Building Materials, 2018, 191:431-439.
    [21] CONG X, KIRKPATRICK R J. 29Si MAS NMR study of the structure of calcium silicate hydrate [J]. Advanced Cement Based Materials, 1996, 3:144-156.
    [22] RODRIGUEZ E T, RICHARDSON I G, BLACK L, et al. Composition, silicate anion structure and morphology of calcium silicate hydrates (C-S-H) synthesised by silica-lime reaction and by controlled hydration of tricalcium silicate (C3S) [J]. Advances in Applied Ceramics, 2015, 114(7):362-371.
    [23] LOVE C A, RICHARDSON I G, BROUGH A R. Composition and structure of C-S-H in white Portland cement-20% metakaolin pastes hydrated at 25 ℃[J]. Cement and Concrete Research, 2007, 37(2):109-117.
    [24] FAUCON P, CHARPENTIER T, NONAT A, et al. Triple-quantum two-dimensional 27Al magic angle nuclear magnetic resonance study of the aluminum incorporation in calcium silicate hydrates[J]. Journal of the American Chemical Society, 1998, 120(46):12075-12082.
    [25] LOEWENSTEIN W. The distribution of aluminum in the tetrahedra of silicates and aluminates[J]. American Mineralogist, 1954, 39(1/2):92-96.
    [26] LARIN A V. The Loewenstein rule:The increase in electron kinetic energy as the reason for instability of Al-O-Al linkage in aluminosilicate zeolites[J]. Physics and Chemistry of Minerals, 2013, 40(10):771-780.
    [27] KOMARNENI S, ROY D M, FYFE C A, et al. Naturally occurring 1.4 nm tobermorite and synthetic jennite:Characterization by 27Al and 29Si MAS NMR spectroscopy and cation exchange properties[J]. Cement and Concrete Research, 1987, 17(6):891-895.
    [28] ANDERSEN M D, JAKOBSEN H J, SKIBSTED J. Incorporation of aluminum in the calcium silicate hydrate (C-S-H) of hydrated Portland cements: A high-field 27Al and 29Si MAS NMR investigation[J]. Inorganic Chemistry, 2003, 42:2280-2287.
    [29] ZHU X P, VANDAMME M, BROCHARD L, et al. Nature of aluminates in C-A-S-H:A cryogenic stability insight, an extension of DNA-code rule, and a general structural-chemical formula[J]. Cement and Concrete Research, 2023, 167:107131.
    [30] RICHARDSON I G, BROUGH A R, GROVES G W, et al. The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) phase[J]. Cement and Concrete Research, 1994, 24(5):813-829.
    [31] MYERS R J, BERNAL S A, NICOLAS R SAN, et al. Generalized structural description of calcium-sodium aluminosilicate hydrate gels:The cross-linked substituted tobermorite model[J]. Langmuir, 2013, 29(17):5294-5306.
    [32] RICHARDSON I G. Model structures for C-(A)-S-H(Ⅰ)[J]. Acta Crystallographica Section B:Structural Science, Crystal Engineering and Materials, 2014, 70(6):903-923.
    [33] KUNHI M A, PARKER S C, BOWEN P, et al. An atomistic building block description of C-S-H—Towards a realistic C-S-H model[J]. Cement and Concrete Research, 2018, 107:221-235.
    [34] POWERS T C, BROWNYARD T L. Studies of the physical properties of hardened cement paste[J]. Journal of American Concrete Institute, 1946, 43:101-132.
    [35] POWERS T C. Structure and physical properties of hardened Portland cement paste[J]. Journal of the American Ceramic Society, 1958, 41(6):1-6.
    [36] BRUNAUER S, MIKHAIL R S, BODOR E E. Some remarks about capillary condensation and pore structure analysis[J]. Journal of Colloid and Interface Science, 1967, 25(3):353-358.
    [37] FELDMAN R F, SEREDA P J. A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties[J]. Matériaux et Constructions, 1968, 1(6):509-520.
    [38] FELDMAN R F. Application of the helium inflow technique for measuring surface area and hydraulic radius of hydrated Portland cement[J]. Cement and Concrete Research, 1980, 10(5):657-664.
    [39] WITTMANN F H. The structure of hardened cement paste—A basis for a better understanding of the materials properties[C]// Proceedings of the Hydraulic Cement Paste:Their Structure and Properties. Sheffield:Cement and Concrete Association, 1976:96-116.
    [40] PAPATZANI S, PAINE K, CALABRIA-HOLLEY J. A comprehensive review of the models on the nanostructure of calcium silicate hydrates[J]. Construction and Building Materials, 2015, 74:219-234.
    [41] JENNINGS H M. A model for the microstructure of calcium silicate hydrate in cement paste[J]. Cement and Concrete Research, 2000, 30(1):101-116.
    [42] TENNIS P D, JENNINGS H M. A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes[J]. Cement and Concrete Research, 2000, 30(6):855-863.
    [43] JENNINGS H M. Refinements to colloid model of C-S-H in cement:CM-Ⅱ [J]. Cement and Concrete Research, 2008, 38(3):275-289.
    [44] ZHU X P, REN Q, HE B, et al. Upscaling degradation of cementitious calcium (aluminate) silicate hydrate upon ultra-low temperature attack:A multiscale insight and a bottom-up enhancement route[J]. Composites Part B:Engineering, 2022, 243:110122.
    [45] ZHU X P, QIAN C, HE B, et al. Experimental study on the stability of C-S-H nanostructures with varying bulk CaO/SiO2 ratios under cryogenic attack[J]. Cement and Concrete Research, 2020, 135:106114.
    [46] ZHU X P, JIANG Z W, HE B, et al. Investigation on the physical stability of calcium-silicate-hydrate with varying CaO/SiO2 ratios under cryogenic attack[J]. Construction and Building Materials, 2020, 252:119103.
    [47] HE B, ZHANG H E, ZHU X P, et al. Thermal-dependent brittleness effect of ultra-high performance concrete exposed to cryogenic flexural loads by acoustic emission evaluation[J]. Cement and Concrete Composites, 2023, 139:105056.
    [48] HE B, ZHU X P, REN Q, et al. Effects of fibers on flexural strength of ultra-high-performance concrete subjected to cryogenic attack[J]. Construction and Building Materials, 2020, 265:120323.
    [49] ZHU X P, REN Q, HE B, et al. The nanomechanical nature of cementitious calcium-(alumino)silicate-hydrate under ultra-low temperature attack:An intrinsic transition and the role of aluminum for bottom-up enhancement[J]. Cement and Concrete Composites, 2022, 134:104811.
    [50] ZHU X P, BROCHARD L, VANDAMME M, et al. A hierarchical C-S-H/organic superstructure with high stiffness, super-low porosity, and low mass density [J]. Cement and Concrete Research, 2024, 176:107407.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱新平,何倍,汤宇祺,杨振东,蒋正武.水化硅酸钙微纳结构及超低温稳定性研究进展[J].建筑材料学报,2024,27(12):1112-1121

复制
分享
文章指标
  • 点击次数:101
  • 下载次数: 113
  • HTML阅读次数: 4
  • 引用次数: 0
历史
  • 收稿日期:2024-05-26
  • 最后修改日期:2024-07-04
  • 在线发布日期: 2025-01-21
文章二维码