微晶AH3含量对高碱碳铝酸盐胶凝材料性能的影响
作者:
作者单位:

1.深圳大学 土木与交通工程学院,广东 深圳 518060;2.深圳大学 广东省滨海土木工程耐久性重点实验室,广东 深圳 518060;3.深圳大学 深圳市低碳建筑材料与技术重点实验室,广东 深圳 518060;4.兰州交通大学 土木工程学院,甘肃 兰州 730070;5.兰州交通大学 道桥工程灾害防治技术国家地方联合工程实验室,甘肃 兰州 730070

作者简介:

刘源涛(1996—),男,湖北黄冈人,深圳大学博士生.E-mail:1294126714@qq.com

通讯作者:

王琰帅(1988—),男,河南禹州人,深圳大学教授,博士生导师,博士.E-mail:yswang@szu.edu.cn

中图分类号:

TU526

基金项目:

“十四五”国家重点研发计划项目(2022YFB2602600);国家自然科学基金-铁路基础研究联合基金资助项目(U2368209);广东省科技厅粤港科技合作项目(2023A0505010020)


Influence of Microcrystalline AH3 Content on Properties of High-Alkali Carboaluminate Cementitious Materials
Author:
  • LIU Yuantao 1,2,3

    LIU Yuantao

    College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China;Guangdong Province Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen 518060, China;Shenzhen Key Laboratory for Low-Carbon Construction Material and Technology, Shenzhen University, Shenzhen 518060, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Rongling 4,5

    ZHANG Rongling

    School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;Bridge Engineering National Local Joint Engineering Laboratory of Disaster Prevention and Contral Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • DONG Biqin 1,2,3

    DONG Biqin

    College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China;Guangdong Province Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen 518060, China;Shenzhen Key Laboratory for Low-Carbon Construction Material and Technology, Shenzhen University, Shenzhen 518060, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Yanshuai 1,2,3

    WANG Yanshuai

    College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China;Guangdong Province Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen 518060, China;Shenzhen Key Laboratory for Low-Carbon Construction Material and Technology, Shenzhen University, Shenzhen 518060, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China;2.Guangdong Province Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen 518060, China;3.Shenzhen Key Laboratory for Low-Carbon Construction Material and Technology, Shenzhen University, Shenzhen 518060, China;4.School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;5.Bridge Engineering National Local Joint Engineering Laboratory of Disaster Prevention and Contral Technology, Lanzhou Jiaotong University, Lanzhou 730070, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为研究微晶氢氧化铝凝胶(AH3)含量对高碱碳铝酸盐胶凝材料性能的影响,设计了氢氧化钠与氢氧化铝复合溶液、偏铝酸钠溶液复配激发石灰石粉的方案.结果表明:随着激发剂中偏铝酸钠溶液的占比从0%逐步增至100%,基体中的单碳型碳铝酸钙含量相对稳定,而微晶AH3的含量则逐渐增加,三水铝石的含量相应减少;微晶AH3的平均晶粒尺寸约19.5 nm,显著小于三水铝石的中值粒径5.82 μm,因而微晶AH3具有更大的比表面积和更强的胶凝性能;随着微晶AH3含量的增加,基体中凝胶孔的占比提升,孔隙结构更致密;试样抗压强度与微晶AH3含量之间呈线性正相关关系,即微晶AH3的含量越高,试样的强度越高.

    Abstract:

    To investigate the impact of microcrystalline aluminum hydroxide gel(AH3) content on the properties of high-alkali carboaluminate cementitious materials, a composite activation scheme was designed using a co-mixed solution of sodium hydroxide, aluminum hydroxide and a sodium aluminate solution, to activate limestone powder. The results indicate that as the proportion of sodium aluminate solution in the activator mixture increases from 0% to 100%, the content of monocarboaluminate in the matrix remains relatively stable, while the content of microcrystalline AH3 progressively increases and the content of gibbsite correspondingly decreases. The average crystallite size of microcrystalline AH3 is approximately 19.5 nm, which is significantly smaller than the median particle size of 5.82 μm for gibbsite, thus endowing it with a larger specific surface area and superior cementitious properties. With the increase of microcrystalline AH3 content, the proportion of gel pores in the matrix increases, resulting in a more compact pore structure. Furthermore, there is a linear positive correlation between compressive strength of samples and the content of microcrystalline AH3, suggesting that higher content of microcrystalline AH3 correlates with greater strength of samples.

    图1 Al(OH)3的颗粒形貌与粒径分布特征Fig.1 Particle morphology and particle size distribution of Al(OH)3
    图2 试样C1~C5的T2 分布图、孔特征与T2w的演化Fig.2 T2 distribution, pore characteristics and T2w evolution of samples C1-C5
    图3 溶液B在激发剂中的占比对试样中凝胶孔水含量与ΔT2w的影响Fig.3 Influence of the proportion of solution B in the activator on the water content in gel pore and ΔT2w of samples(72 h)
    图4 试样C1~C5的XRD图谱Fig.4 XRD patterns of samples C1-C5
    图5 试样C1~C5的物相组成Fig.5 Phase compositions of samples C1-C5
    图6 试样C1、C3与C5养护28 d时的27Al MAS-NMR谱Fig.6 27Al MAS-NMR spectra of samples C1, C3, and C5 cured for 28 d
    图7 溶液B占比对试样中三水铝石与AH3含量的影响Fig.7 Influence of the proportion of solution B in the activator on the content of gibbsite and AH3 in samples
    图8 试样C1~C5养护28 d时的TG-DTG曲线Fig.8 TG-DTG curves of samples C1-C5 cured for 28 d
    图9 试样C1~C5的抗压强度Fig.9 Compressive strength of samples C1-C5
    图10 抗压强度与AH3含量的相关性Fig.10 Correlation between compressive strength and AH3 content
    图11 试样养护28 d时的SEM图像和EDS点扫图谱Fig.11 SEM images and EDS spectra of spots of samples cured for 28 d
    表 1 高碱碳铝酸盐胶凝材料配合比Table 1 Mix proportions(by mass) of high-alkali carboaluminate cementitious materials
    表 2 试样C1中AH3相的晶粒尺寸Table 2 Crystallite size of AH3 in sample C1
    图1 Al(OH)3的颗粒形貌与粒径分布特征Fig.1 Particle morphology and particle size distribution of Al(OH)3
    图2 试样C1~C5的T2 分布图、孔特征与T2w的演化Fig.2 T2 distribution, pore characteristics and T2w evolution of samples C1-C5
    图3 溶液B在激发剂中的占比对试样中凝胶孔水含量与ΔT2w的影响Fig.3 Influence of the proportion of solution B in the activator on the water content in gel pore and ΔT2w of samples(72 h)
    图4 试样C1~C5的XRD图谱Fig.4 XRD patterns of samples C1-C5
    图5 试样C1~C5的物相组成Fig.5 Phase compositions of samples C1-C5
    图6 试样C1、C3与C5养护28 d时的27Al MAS-NMR谱Fig.6 27Al MAS-NMR spectra of samples C1, C3, and C5 cured for 28 d
    图7 溶液B占比对试样中三水铝石与AH3含量的影响Fig.7 Influence of the proportion of solution B in the activator on the content of gibbsite and AH3 in samples
    图8 试样C1~C5养护28 d时的TG-DTG曲线Fig.8 TG-DTG curves of samples C1-C5 cured for 28 d
    图9 试样C1~C5的抗压强度Fig.9 Compressive strength of samples C1-C5
    图10 抗压强度与AH3含量的相关性Fig.10 Correlation between compressive strength and AH3 content
    图11 试样养护28 d时的SEM图像和EDS点扫图谱Fig.11 SEM images and EDS spectra of spots of samples cured for 28 d
    表 1 高碱碳铝酸盐胶凝材料配合比Table 1 Mix proportions(by mass) of high-alkali carboaluminate cementitious materials
    表 2 试样C1中AH3相的晶粒尺寸Table 2 Crystallite size of AH3 in sample C1
    参考文献
    引证文献
引用本文

刘源涛,张戎令,董必钦,王琰帅.微晶AH3含量对高碱碳铝酸盐胶凝材料性能的影响[J].建筑材料学报,2024,27(12):1135-1142

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-14
  • 最后修改日期:2024-05-28
  • 在线发布日期: 2025-01-21
文章二维码