硅灰-橡胶/水泥砂浆蠕变性能及微观机制研究
作者:
作者单位:

1.安徽理工大学土木建筑学院;2.安徽理工大学矿业工程学院;3.安徽理工大学安全科学与工程学院

基金项目:

安徽省高校自然科学研究项目(2023AH051219);煤炭精细勘探与智能开发全国重点实验室基金(SKLCRSM23KF007);国家自然科学基金项目(52074007);矿山建设工程安徽省高校重点实验室基金(GXZDSYS2022102);绿色建筑与装配式建造安徽省重点实验室基金(2022-JKYL-007);建筑结构与地下工程安徽省重点实验室基金(KLBSUE-2021-01)


Study on creep properties and microscopic mechanism of silica fume-rubber/cement mortar
Author:
Affiliation:

1.School of Civil Engineering and Architecture, Anhui University of Science and Technology;2.School of Mining Engineering ,Anhui University of Science and Technology;3.. .School of Safety Science and Engineering,Anhui University of Science and Technology,

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • | | | |
  • 文章评论
    摘要:

    为探究硅灰(Silica fume,SF)掺量及橡胶粒径对水泥砂浆蠕变性能的影响,采用设计的16组试件进行正交试验,分别对不同硅灰掺量、不同橡胶粒径水泥砂浆的无侧限抗压强度、蠕变特性及微观特征进行分析。结果表明:橡胶颗粒会减小砂浆的无侧限抗压强度,增大蠕变变形,在SF加入后砂浆的强度回升,蠕变变形减少。在蠕变试验中,橡胶砂浆与普通砂浆都经历了三级加载,且橡胶砂浆的蠕变历时更长,硅灰的加入使试件发生破坏的载荷等级明显提高。基于减速蠕变阶段和等速蠕变阶段的试验数据对Burgers模型的参数进行辨识,发现二者的吻合情况较好。微观结构与细观模型很好的显示了橡胶、硅灰对砂浆蠕变性能的协同作用机理。

    Abstract:

    In order to investigate the effects of silica fume (SF) dosing and rubber particle size on the creep properties of cement mortar, orthogonal tests were carried out using 16 groups of specimens designed to analyse the unconfined compressive strength, creep properties and microscopic characteristics of cement mortar with different silica fume dosing and different rubber particle sizes, respectively. The results showed that the rubber particles would reduce the unconfined compressive strength and increase the creep deformation of the mortar, and the strength of the mortar recovered and the creep deformation decreased after the addition of SF. In the creep test, both rubber mortar and ordinary mortar experienced three levels of loading, and the creep of rubber mortar lasted longer, while the addition of silica fume significantly increased the load level at which the specimen suffered damage. The parameters of the Burgers model were identified based on the test data of the decelerated creep stage and the isokinetic creep stage, and it was found that they were in good agreement.The microstructure and fine-scale modelling show well the synergistic mechanism of rubber and silica fume on the creep performance of mortar.

    参考文献
    [1] 吴志红. “十四五”废旧轮胎综合利用开启“绿色黄金”时代[J]. 中国轮胎资源综合利用, 2021(5): 10-12.WU Zhihong. China "Fourteen Five" comprehensive utilisation of waste tyres to open the "green gold" era [J]. Tire Resources Recycling, 2021(5): 10-12. (in Chinese)
    [2] 沈卫国,张涛,李进红,等.橡胶集料对聚合物改性多孔混凝土性能的影响[J]. 建筑材料学报, 2010, 13(4):509-514.SHEN Weiguo, ZHANG Tao, LI Jinhong, et al. Investigation on the Influence of Rubber Aggregate on the Properties of Polymer Modified Porous Concrete [J].Journal of Building Materials,2010,13(4):509-514. (in Chinese)
    [3] 刘艳荣,葛树奎,韩瑜.废旧轮胎橡胶粉改性水泥基材料研究概况[J]. 材料导报, 2014, 28(24):422-426.LIU Yanrong, GE Shukui, HAN Yu. Research Progress of Scrap Rubber Powder Modified Cement-based Composites[J].Materials Reports,2014,28(24):422- 426. (in Chinese)
    [4] Sakdirat K, Dan L, Yu C, et al. Enhancement of Dynamic Damping in Eco-Friendly Railway Concrete SleepersUsing Waste-Tyre Crumb Rubber[J]. Materials, 2018, 11(7): 1169.
    [5] Gupta T, Siddique S, Sharma R K, et al. Behaviour of waste rubber powder and hybrid rubber concrete in aggressive environment[J].Construction and Building Materials, 2019, 217: 283-291.
    [6] Thomas B S, Gupta R C. Long term behaviour of cement concrete containing discarded tire rubber[J]. Journal of Cleaner Production,2015, 102(9): 78-87.
    [7] 杨若冲,谈至明,黄晓明,等. 掺聚合物的橡胶混凝土路用性能研究[J]. 中国公路学报, 2010, 23(4):15-19.YANG Ruochong, TAN Zhiming, HUANG Xiaoming, et al. Research on Performance of Rubberized Concrete Incorporated with Polymer[J].China Journal of Highway Transport,2010,23(4):15-19. (in Chinese)
    [8] 胡艳丽,高培伟,李富荣,等. 不同取代率的橡胶混凝土力学性能试验研究 [J]. 建筑材料学报, 2020, 23(1): 85-92.HU Yanli, GAO Peiwei, LI Furong, et al. Experimental Study on Mechanical Properties of Rubber Concrete with Different Substitution Rate[J]. Journal of Building Materials, 2020, 23(1): 85-92. (in Chinese)
    [9] ABAZA O A, HUSSEIN Z S. Flexural behavior of steel fiber-reinforced rubberized concrete[J]. Journal of Materials in Civil Engineering, 2016, 28(1): 04015076.
    [10] 王恒, 徐义华, 姚韦靖, 等. 稻壳灰橡胶混凝土抗冻融性能及微观结构[J]. 复合材料学报,2023, 40(5): 2951-2959.WANG Heng, XU Yihua, YAO Weijing, et al. Freeze-thaw cycle and microstructure of rice husk ash rubber concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2951-2959. (in Chinese)
    [11] 刘誉贵, 马育, 刘攀. 氨化与磺化改性橡胶混凝土机理及强度研究[J]. 材料导报, 2018, 32(18): 3142-3145+3153.LIU Yugui, MA Yu, LIU Pan. Study on Mechanism and Strength of Ammoniated Modified Rubber Concrete and Sulfonated Modified Rubber Concrete[J].Material Bulletin, 2018, 32 (18): 3142-3145+3153. (in Chinese)
    [12] KHAN K,AHMAD W,AMIN M N,et al.Nano?silica?modified concrete:A bibliographic analysis and comprehensive review of material properties[J]. Nanomaterials,2022,12(12):1989.
    [13] KIM B J,LEE G W,CHOI Y C. Hydration and mechanical properties of high?volume fly ash concrete with nano?silica and silica fume[J]. Materials,2022,15(19):6599.
    [14] 徐晶, 王先志. 纳米二氧化硅对混凝土界面过渡区的改性机制及其多尺度模型[J]. 硅酸盐学报, 2018, 46 (08): 1053-1058.XU Jing,WANG Xianzhi. Effect of Nano-Silica Modification On Interfacial Transition Zone in Concrete and Its Multiscale Modelling[J]. Journal of the Chinese Ceramic Society,2018, 46 (08): 1053-1058.(in Chinese)
    [15] 王娟,王文超,许耀群,等. 纳米SiO_2对橡胶混凝土断裂行为的影响[J]. 建筑材料学报,2023, 26 (07): 731-738.WANG Juan,WANG Wenchao,XU Yaoqun,et al. Effect of Nano-SiO2 on Fracture Behavior of Rubber Concrete[J]. Journal of Building Materials, 2023, 26 (07): 731-738. (in Chinese)
    [16] MOHAMMED B S, WANG A B, WANG S S, et al. Properties of nano silica modified rubber concrete[J]. J Clean Prod, 2016, 119: 66-75.
    [17] 张金松,唐雨轮,占佳佳,等.动静加载下微硅粉-橡胶/水泥砂浆的力学性能[J].复合材料学报,2024, 41.ZHANG Jinsong, TANG Yulun, ZHAN Jiajia, et al. . Mechanical properties of micro silicon powder -rubber/cement mortar under dynamic and static loading[J]. Acta Materiae Compositae Sinica, 2024, 41. (in Chinese)
    [18] Mostofinejad D, Aghamohammadi O, Bahmani H, et al. Improving thermal characteristicsand energy absorption of concrete by recycled rubber and silica fume[J]. Developments in the Built Environment, 2023, 16: 100221.
    [19] Luo G, Zhang J, Zhao Z, et al. Fatigue Property Evaluation of Sustainable Porous Concrete Modified by Recycled Ground Tire Rubber/Silica Fume under Freeze-Thaw Cycles[J]. Sustainability, 2023, 15(10): 7965.
    [20] Singh G, Tiwary A K, Singh S, et al. Incorporation of silica fumes and waste glass powder on concrete properties containing crumb rubber as a partial replacement of fine aggregates[J]. Sustainability, 2022, 14(21): 14453.
    [21] Singh S, Kaur G. Impact resistance of wastetyre rubber and silica fume-based concrete mixes[J]. International Journal of Structural Engineering, 2022, 12(1): 1-13.
    [22] Gupta T, Siddique S, Sharma R K, et al. Effect of aggressive environment on durability of concrete containing fibrous rubber shreds and silica fume[J]. Structural Concrete, 2021,22(5): 2611-2623.
    [23] 马海彬,胡凡,马晴晴等. 橡胶粒径与掺量对砂浆力学性能影响的试验研究[J]. 科学技术与工程, 2019, 19 (04): 232-236.MA Haibing,HU Fan,MA Qingqing,et al. cience Technology and Engineering,2019,19( 4) : 232-236. (in Chinese)
    [24] 任翔,胡功宏,吴帆,等. 纳米硅粉对大掺量橡胶砂浆力学及收缩性能影响试验研究 [J]. 科学技术与工程, 2019, 19 (22): 299-304.REN Xiang,HU Gonghong,WU Fan,et al. Experimental investigation on effect of particle size and dosage of rubber on mechanical properties of mortar [J]. Science Technology and Engineering,2019,19( 22) : 299-304. (in Chinese)
    [25] 刘雨姗,庞建勇,姚韦靖.页岩陶粒轻骨料混凝土高温后蠕变特性[J].建筑材料学报, 2021,24 (05): 1096-1104.LIU Yushan,PANG Jianyong,YAO Weijing. Creep Behavior of Shale Ceramsite Lightweight Aggregate Concrete Exposed to High Temperature[J].Journal of Building Materials, 2021, 24 (05): 1096-1104.( in Chinese)
    [26] 杨秀荣,姜谙男,王善勇,等. 冻融循环条件下片麻岩蠕变特性试验研究[J]. 岩土力学, 2019, 40 (11): 4331-4340.YANG Rongxiu,JIANG Annan,WANG Shanyong,et al. Experimental study on creep characteristics of gneiss under freeze-thaw cycles [J].Rock and Soil Mechanics,2019, 40 (11): 4331-4340. (in Chinese)
    [27] 马志奇,杨小彬,刘腾辉,等.粒径大小对颗粒堆积体Burgers模型蠕变参数相似试验研究[J].矿业科学学报,2022, 7(6): 730-737.MA Zhiqi,YANG Xiaobing,LIU Tenghui,et al.Similar experimental study on the effect of particle size on the creepparameters of Burgers model of granular accumulation[J].Journal of Mining Science and Technology,2022, 7(6): 730-737. (in Chinese)
    [28] 朱星曈,耿欧,朱思远. 废轮胎橡胶混凝土界面过渡区特征试验研究[J]. 硅酸盐通报, 2021,40 (02): 573-578.ZHU Xingtong,GENG Ou,ZHU Siyuan. Characteristics of Interface Transition Zone of Waste Tire Rubber Concrete[J]. Bulletin of the Chinese Ceramic Societ,2021,40 (02): 573-578. (in Chinese)
    [29] 杨荣周,徐颖,陈佩圆, 等.SHPB劈裂试验下橡胶水泥砂浆的动态力学、能量特性及破坏机理试验研究[J].材料导报,2021,35(10):10062-10072.YANG Rongzhou,XU Ying,CHEN Peiyuan,et al. Experimental Study on Dynamic Mechanics,Energy Characteristics,and Failure Mechanism of Rubber Cement Mortar Under SHPB Splitting Test[J].Material Reports B:Research Papers,2021,35(10):10062-10072. (in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:100
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-05-05
  • 最后修改日期:2024-07-17
  • 录用日期:2024-08-23
文章二维码