HS-SHCC弯曲疲劳变形与疲劳寿命
作者:
作者单位:

1.郑州大学 力学与安全工程学院,河南 郑州 450001;2.国网河南省电力公司经济技术研究院,河南 郑州 450052;3.郑州大学 土木工程学院,河南 郑州 450001

作者简介:

周甲佳(1984—),女,河南南阳人,郑州大学副教授,博士生导师,博士.E-mail:zhouaf@zzu.edu.cn

通讯作者:

赵 军(1971—),男,河南漯河人,郑州大学教授,博士生导师,博士.E-mail:zhaoj@zzu.edu.cn

中图分类号:

TU528.58

基金项目:

国家自然科学基金资助项目(52178257,51708510);河南省优秀青年基金资助项目(222300420082)


Flexural Fatigue Deformation and Fatigue Life of HS-SHCC
Author:
Affiliation:

1.School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China;2.State Grid Henan Economic Research Institute, Zhengzhou 450052, China;3.School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    对抗压强度为83.41 MPa的高强应变硬化水泥基复合材料(HS-SHCC)试件进行了四点弯曲疲劳试验,研究了HS-SHCC试件在不同应力水平(0.70、0.80、0.85、0.90)下的裂缝扩展、跨中挠度及疲劳寿命.结果表明:HS-SHCC试件的疲劳寿命随着应力水平的提高而不断减小;HS-SHCC试件在弯曲疲劳荷载下呈现出多裂缝开裂的特征,随着应力水平的降低,试件表面的裂缝数量减少;当应力水平为0.70~0.85时,HS-SHCC试件的跨中挠度呈现出明显的快速发展、稳定发展、失稳三阶段,而当应力水平为0.90时,HS-SHCC试件的跨中挠度则表现出稳定发展和失稳两阶段特性;与普通SHCC相同,HS-SHCC试件的应力水平-疲劳寿命(λ-Nf曲线呈现出双线性趋势.基于λ-Nf曲线和三参数Weibull分布理论,提出各失效概率下HS-SHCC的弯曲疲劳寿命预测模型,得出失效概率为0.05时HS-SHCC的疲劳强度极限(疲劳循环200万次)对应的最大应力水平为0.618.

    Abstract:

    Four-point bending fatigue tests were carried out on high strength strain hardening cementitious composite(HS-SHCC) specimens with compressive strength of 83.41 MPa. The crack propagation, mid-span deflection and fatigue life of HS-SHCC specimens at different stress levels (0.70、0.80、0.85、0.90) were studied. The results show that the fatigue life of HS-SHCC specimens decreases with the increase of stress level. The HS-SHCC specimens show multi-cracking characteristic under flexural fatigue loads. As the stress level decreases, the crack numbers on the surface of the specimens show a decreased trend. At the stress level 0.70-0.85, the mid-span deflection of HS-SHCC displays obvious three stages of rapid development, stable development and instability. At the stress level 0.90, the mid-span deflection of HS-SHCC specimens shows two stages of stable development and instability. Similar to ordinary SHCC, the stress level-fatigue life curves (λ-Nf curve) of HS-SHCC specimens show a bilinear trend. Based on the obtained λ-Nf curve and the three-parameter Weibull distribution theory, a flexural fatigue life prediction model of HS-SHCC under different failure probabilities is proposed. On this basis, the maximum stress level corresponding to the fatigue strength limit (corresponding to 2 million fatigue cycles) of HS-SHCC is predicted to be 0.618 when the failure probability is 0.05.

    图1 HS-SHCC试件的制备过程Fig.1 Preparation process of HS-SHCC specimen
    图2 疲劳加载示意图Fig.2 Fatigue loading diagram(size:mm)
    图3 疲劳加载曲线Fig.3 Fatigue loading curve
    图4 静力荷载下HS-SHCC试件的荷载-跨中挠度曲线Fig.4 Load-mid-span deflection curves of HS-SHCC specimens under static load
    图5 HS-SHCC试件底部纯弯段的裂缝图Fig.5 Cracks in pure bending section at the bottom of HS-SHCC specimens
    图6 应力水平为0.85时HS-SHCC试件侧面纯弯段的应变场分布Fig.6 Strain field distribution in pure bending section on the side of HS-SHCC specimens at stress level of 0.85
    图7 各应力水平下HS-SHCC试件最大跨中挠度与疲劳系数之间的关系Fig.7 Relationship between the maximum mid-span deflection and fatigue coefficient of HS-SHCC specimens under different stress levels
    图8 HS-SHCC、普通SHCC和混凝土的λ-Nf曲线Fig.8 λ-Nf curves for HS-SHCC,ordinary SHCC and ordinary concrete
    图9 三参数Weibull分布检验拟合结果Fig.9 Three-parameter Weibull distribution test fitting results
    图10 不同失效概率的λ-Nf模型预测结果Fig.10 Prediction results by λ-Nf model with different failure probabilities
    表 1 HS-SHCC试件的配合比Table 1 Mix proportion(by mass) of HS-SHCC specimens
    表 2 不同应力水平下的裂缝数量Table 2 Crack numbers under different stress levels
    表 3 各应力水平下HS-SHCC试件的疲劳寿命Table 3 Fatigue life of HS-SHCC specimens at different stress levels
    表 4 HS-SHCC试件疲劳寿命的三参数Weibull分布模型的参数Table 4 Parameters of three-parameter Weibull distribution for fatigue life of HS-SHCC specimens
    表 5 不同失效概率下HS-SHCC的等效疲劳寿命Table 5 Equivalent fatigue life of HS-SHCC under different failure probabilities
    参考文献
    [1] 陈肇元, 徐有邻, 钱稼茹. 土建结构工程的安全性与耐久性[J]. 建筑技术, 2002, 33(4):248-253.CHEN Zhaoyuan, XU Youlin, QIAN Jiaru. Safety and durability of structural works in civil engineering[J]. Architecture Technology, 2002, 33(4):248-253. (in Chinese)
    [2] LI V C. 高延性纤维增强水泥基复合材料的研究进展及应用[J]. 硅酸盐学报, 2007, 35(4):531-536.LI V C. Process and application of engineered cementitious composites [J]. Journal of the Chinese Ceramic Society, 2007, 35(4):531-536. (in Chinese)
    [3] LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992,118(11):2246-2264.
    [4] ZHU J X, XU L Y, HUANG B T, et al. Recent developments in engineered/strain-hardening cementitious composites(ECC/SHCC) with high and ultra-high strength[J]. Construction and Building Materials, 2022, 342:127956.
    [5] LI V C. From micromechanics to structural engineering the design of cementitious composites for civil engineering applications[J]. Doboku Gakkai Ronbunshu, 1993(471):1-12.
    [6] MUELLER S, RANJBARIAN M, MECHTCHERINE V. Fatigue behavior of strain-hardening cement-based composites—From the single fiber level to real-scale application[J]. Structural Concrete, 2019, 20(4):1231-1242.
    [7] GUO M H, ZHONG Q L, ZHOU Y W, et al. Influence of flexural loading and chloride exposure on the fatigue behavior of high-performance lightweight engineered cementitious composites[J]. Construction and Building Materials, 2020, 249:24-34.
    [8] ZHANG J, LI V C. Monotonic and fatigue performance in bending of fiber-reinforced engineered cementitious composite in overlay system[J]. Cement and Concrete Research, 2002, 32(3):415-423.
    [9] SUTHIWARAPIRAK P, MATSUMOTO T, KANDA T. Multiple cracking and fiber bridging characteristics of engineered cementitious composites under fatigue flexure[J]. Journal of Materials in Civil Engineering, 2004, 16(5):433-443.
    [10] SUTHIWARAPIRAK P, MATSUMOTO T, KANDA T. Flexural fatigue failure characteristics of an engineered cementitious composite and polymer cement mortars[J]. Journal of Materials for Concrece Structures and Pavements, 2002,57(718):121-134.
    [11] SUN R J, HAN L B, ZHANG H Z, et al. Fatigue life and cracking characterization of engineered cementitious composites(ECC) under flexural cyclic load[J]. Construction and Building Materials, 2022,335:127465.
    [12] HUANG B T, WU J Q, YU J, et al. High-strength seawater sea-sand engineered cementitious composites(SS-ECC):Mechanical performance and probabilistic modeling[J]. Cement and Concrete Composites, 2020, 114:103740.
    [13] HUANG B T, WU J Q, YU J, et al. Seawater sea-sand engineered/strain-hardening cementitious composites(ECC/SHCC):Assessment and modeling of crack characteristics[J]. Cement and Concrete Research, 2021, 140:124-138.
    [14] LIU W, XU S L, FENG P. Fatigue damage propagation models for ductile fracture of ultrahigh toughness cementitious composites[J]. International Journal of Damage Mechanics, 2017, 26(6):919-932.
    [15] LIU W, XU S L, LI H D. Flexural fatigue damage model of ultra-high toughness cementitious composites on base of continuum damage mechanics[J]. International Journal of Damage Mechanics, 2014, 23(7):949-963.
    [16] 韩乐冰. ECC及其组合板弯曲疲劳性能研究[D]. 济南:山东大学, 2021.HAN Lebing. Research on flexural fatigue performance of ECC and its composite slabs[D]. Jinan:Shandong University, 2021. (in Chinese)
    [17] 钟倩丽. 正常与氯盐侵蚀环境下超高性能ECC与轻质高强ECC的疲劳性能试验研究[D]. 深圳:深圳大学, 2019.ZHONG Qianli. Experimental study on fatigue property of ultra high performance ECC and high strength lightweight ECC under normal and chloride penetration environment[D]. Shenzhen:Shenzhen University, 2019. (in Chinese)
    [18] SUI L L, ZHONG Q L, YU K Q, et al. Flexural fatigue properties of ultra-high performance engineered cementitious composites(UHP-ECC) reinforced by polymer fibers[J]. Polymers, 2018, 10(8):892.
    [19] RANADE R, LI V C, HEARD W F, et al. Impact resistance of high strength-high ductility concrete[J]. Cement and Concrete Research, 2017, 98:24-35.
    [20] 王秋维,梁林,史庆轩.混杂钢纤维超高性能混凝土轴拉力学性能及本构模型[J].复合材料学报, 2024, 41(1):383-394.WANG Qiuwei, LIANG Lin, SHI Qingxuan. Mechanical properties and constitutive model of ultra-high performance concrete with hybrid steel fiber under axial tension[J]. Acta Materiae Compositae Sinica, 2024, 41(1):383-394. (in Chinese)
    [21] YU K Q, YU J T, DAI J G, et al. Development of ultra-high performance engineered cementitious composites using polyethylene(PE) fibers[J]. Construction and Building Materials, 2018, 158:217-227.
    [22] 李力剑,徐礼华,池寅,等.含粗骨料超高性能混凝土单轴受压疲劳性能[J].建筑材料学报, 2022, 25(4):381-388.LI Lijian, XU Lihua, CHI Yin, et al. Fatigue performance of ultra-high performance concrete containing coarse aggregate under uniaxial cyclic compression[J]. Journal of Building Materials, 2022, 25(4):381-388. (in Chinese)
    [23] 李力剑,刘素梅,徐凡丁,等.含粗骨料超高性能混凝土的单轴受拉力学性能[J].建筑材料学报,2024,27(2):167-173.LI Lijian, LIU Sumei, XU Fanding, et al. Uniaxial tensile behavior of ultra-high performance concrete containing coarse aggregate[J]. Journal of Building Materials, 2024, 27(2):167-173. (in Chinese)
    [24] 路承功,魏智强,乔宏霞,等. 基于3参数Weibull分布钢筋混凝土盐腐蚀环境中可靠性寿命分析[J]. 工程科学学报,2021,43(4):512-520.LU Chenggong, WEI Zhiqiang, QIAO Hongxia, et al. Reliability life analysis of reinforced concrete in a salt corrosion environment based on a three-parameter Weibull distribution[J]. Chinese Journal of Engineering, 2021, 43(4): 512-520.(in Chinese)
    [25] HU W T, QIAN Q. Small data reliability analysis in concrete three-point bending tests: A Weibull mixture model approach based on Weibull fracture theory[J]. Engineering Fracture Mechanics, 2024, 309: 110344.
    相似文献
    引证文献
引用本文

周甲佳,董泽华,陈本发,景川,赵军.HS-SHCC弯曲疲劳变形与疲劳寿命[J].建筑材料学报,2025,28(3):193-201

复制
分享
文章指标
  • 点击次数:31
  • 下载次数: 29
  • HTML阅读次数: 5
  • 引用次数: 0
历史
  • 收稿日期:2024-04-08
  • 最后修改日期:2024-08-22
  • 在线发布日期: 2025-04-06
文章二维码