碳化对水泥基材料孔径分布及渗透速率影响的数值研究
作者:
作者单位:

1.上海交通大学 海洋工程国家重点实验室,上海 200240;2.华南理工大学 亚热带建筑与城市科学全国重点实验室,广东 广州 510640

作者简介:

童良玉(1999—), 女, 安徽六安人, 上海交通大学博士生. E-mail: tongly3@sjtu.edu.cn

通讯作者:

刘清风(1986—), 男, 辽宁大连人, 上海交通大学教授, 博士生导师, 博士. E-mail: liuqf@sjtu.edu.cn

中图分类号:

TU528.01

基金项目:

国家优秀青年科学基金资助项目(52222805); 上海市自然科学基金资助项目(22ZR1431400); 亚热带建筑与城市科学全国重点实验室开放基金资助项目(2023KA03)


Numerical Study on Effect of Carbonation on Pore Size Distribution and Permeability of Cementitious Materials
Author:
Affiliation:

1.School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;2.State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510640, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    研究了水泥基材料碳化沉积物在孔隙结构的填充位置,分析了碳化对孔径分布及渗透速率的影响,同时基于复合概率孔径分布构建了碳化后水泥基材料非线性孔径分布转化模型和渗透速率预测模型,并通过试验数据对模型进行了验证.结果表明:在综合考虑碳化后孔隙率和孔径分布变化的情况下,渗透速率的预测精度可得到提升;碳化时孔饱和度的变化可改变碳化沉积物在孔隙结构中的填充位置,进而导致碳化后孔径分布和渗透速率的差异;相较于单一孔隙密实过程,迭代密实过程中水泥基材料渗透速率的下降率有所减缓.

    Abstract:

    Filling position of carbonized sediments in the pore structure of cementitious materials was investigated. The effect of the carbonation on pore size distribution and permeation rate was analyzed. Additionally, based on the composite probability pore size distribution, nonlinear pore size distribution transformation models and permeation rate prediction models for cementitious materials after carbonation were constructed. These models were then confirmed using experimental data. The results indicate that the prediction accuracy of water permeation rate can be improved in consideration of the changes in porosity and pore size distribution after carbonation. The change in pore saturation during carbonation alters the filling position of carbonized sediments within the pore structure, leading to differences in pore size distribution and permeation rate after carbonation. Compared to the single pore compaction process, the rate of decrease in cementitious materials permeation rate is slower during the iterative compaction process.

    图1 复合概率孔径分布Fig.1 Multi-modal lognormal pore size distribution
    图2 水泥基材料非饱和孔隙结构示意图Fig.2 Schematic of unsaturated pore structure of cementitious materials
    图3 碳化后孔隙结构转化示意图Fig.3 Schematic of transformed pore structure after carbonation
    图4 试件M45孔径分布的试验数据与选取不同转化修正系数后的预测结果对比Fig.4 Comparison of measured data and predicted results of pore size distribution of specimen M45 with different correction factors
    图5 水泥基材料孔径分布的试验数据与预测结果对比Fig.5 Comparison of measured data and predicted results of pore size distribution of cementitious materials
    图6 碳化前后水泥基材料固有渗透速率的试验数据与预测结果对比Fig.6 Comparison of measured data and predicted results of intrinsic permeability of cementitious materials before and after carbonation
    图7 不同饱和度下孔隙率变化相同时水泥基材料孔径分布的变化Fig.7 Changes in pore size distribution of cementitious materials at different saturation with the same porosity reduction
    图8 水泥基材料固有渗透速率预测值Fig.8 Predicted intrinsic permeability of cementitious materials
    图9 不同孔隙率变化下饱和度相同时水泥基材料的孔径分布转化Fig.9 Transformation of pore size distribution of cementitious materials at the same saturation under different porosity reductions
    图10 不同转化方式下水泥基材料固有渗透速率预测值Fig.10 Predicted intrinsic permeability of cementitious materials corresponding to different transformed methods
    参考文献
    [1] SHEN X H, LIU Q F, HU Z, et al. Combine ingress of chloride and carbonation in marine-exposed concrete under unsaturated environment: A numerical study[J]. Ocean Engineering, 2019, 189:106350.
    [2] LIU Q F. Progress and research challenges in concrete durability:Ionic transport, electrochemical rehabilitation and service life prediction[J]. RILEM Technical Letters, 2022, 7:98-111.
    [3] 莫媛媛, 唐薇, 占宝剑, 等. 碳化再生微粉水泥基材料的性能及其碳足迹评价[J]. 建筑材料学报, 2023, 26(11):1207-1213.MO Yuanyuan, TANG Wei, ZHAN Baojian, et al. Performance and carbon footprint evaluation of cement-based materials incorporating carbonated recycled fine powder[J]. Journal of Building Materials, 2023, 26(11):1207-1213. (in Chinese)
    [4] ZHANG D, GHOULEH Z, SHAO Y X. Review on carbonation curing of cement-based materials[J]. Journal of CO2 Utilization, 2017, 21:119-131.
    [5] NIELSEN P, BOONE M A, HORCKMANS L, et al. Accelerated carbonation of steel slag monoliths at low CO2 pressure-microstructure and strength development[J]. Journal of CO2 Utilization, 2020, 36:124-134.
    [6] LIU P, YU Z W, CHEN Y. Carbonation depth model and carbonated acceleration rate of concrete under different environment[J]. Cement and Concrete Composites, 2020, 114:103736.
    [7] 童良玉, 刘清风. 考虑多尺度非均质性的混凝土传输性能预测模型[J]. 建筑材料学报, 2023, 26(10):1062-1071.TONG Liangyu, LIU Qingfeng. Modelling of concrete transport property by considering multi-scale heterogeneous characteristics[J]. Journal of Building Materials, 2023, 26(10):1062-1071. (in Chinese)
    [8] AUROY M, POYET S, LE BESCOP P, et al. Impact of carbonation on unsaturated water transport properties of cement-based materials[J]. Cement and Concrete Research, 2015, 74:44-58.
    [9] MENG Z Z, ZHANG Y, CHEN W K, et al. A numerical study of moisture and ionic transport in unsaturated concrete by considering multi-ions coupling effect[J]. Transport in Porous Media, 2024, 151(2):339-366.
    [10] 何娟, 杨长辉. 碳化对碱矿渣水泥浆体微观结构的影响[J]. 建筑材料学报, 2012, 15(1):126-130.HE Juan, YANG Changhui. Influence of carbonation on microstructure of alkali-activated slag cement pastes[J]. Journal of Building Materials, 2012, 15(1):126-130. (in Chinese)
    [11] PATEL R A, CHURAKOV S V, PRASIANAKIS N I. A multi-level pore scale reactive transport model for the investigation of combined leaching and carbonation of cement paste[J]. Cement and Concrete Composites, 2021, 115:103831.
    [12] 冷勇, 余睿, 范定强, 等. 碳化再生粗骨料环保型超高性能混凝土的制备[J]. 建筑材料学报, 2022, 25(11):1185-1189, 1218.LENG Yong, YU Rui, FAN Dingqiang, et al. Preparation of environmentally friendly UHPC containing carbonized recycled coarse aggregate[J]. Journal of Building Materials, 2022, 25(11):1185-1189, 1218. (in Chinese)
    [13] 高轩, 刘清风. 水泥浆-骨料界面过渡区微观特征的数值研究[J/OL]. 建筑材料学报, 2024:1-15 [20240531].http://kns.cnki.net/kcms/detail/31.1764.TU.20231211.1514.006.html.GAO Xuan, LIU Qingfeng. Numerical study on microscopic characteristics of the interfacial transition zone between cement paste and aggregate[J/OL]. Journal of Building Materials, 2024:1-15[20240531]. http://kns.cnki.net/kcms/detail/31.1764.TU.20231211.1514.006.html.(in Chinese)
    [14] TONG L Y, CAI Y, LIU Q F. Carbonation modelling of hardened cementitious materials considering pore structure characteristics:A review[J]. Journal of Building Engineering, 2024, 96: 110547.
    [15] 张庆章, 方燕, 宋力, 等. 混凝土孔结构及其分形维数与氯离子扩散性能的关系[J]. 硅酸盐通报, 2022, 41(8):2716-2727.ZHANG Qingzhang, FANG Yan, SONG Li, et al. Relationship between pore structure,fractal dimension and chloride diffusion performance of concrete[J]. Bulletion of the Chinese Ceramic Society, 2022, 41(8):2716-2727. (in Chinese)
    [16] LIU Q F, HU Z, WANG X E, et al. Numerical study on cracking and its effect on chloride transport in concrete subjected to external load[J]. Construction and Building Materials, 2022, 325:126797.
    [17] MAEKAWA K, ISHIDA T, KISHI T. Multi-scale modeling of concrete performance integrated material and structural mechanics[J]. Journal of Advanced Concrete Technology, 2003, 1(2):91-126.
    [18] LU C S, DANZER R, FISCHER F D. Fracture statistics of brittle materials:Weibull or normal distribution[J]. Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2002, 65(6):067102.
    [19] SHI D X, BROWN P W, MA W P. Lognormal simulation of pore size distributions in cementitious materials[J]. Journal of the American Ceramic Society, 1991, 74(8):1861-1867.
    [20] HOU D W, LI D Y, HUA P C, et al. Statistical modelling of compressive strength controlled by porosity and pore size distribution for cementitious materials[J]. Cement and Concrete Composites, 2019, 96:11-20.
    [21] SHI D X, MA W P, BROWN P W. Lognormal simulation of pore evolution during cement and mortar hardening[J]. MRS Online Proceedings Library, 1989, 176(1):143.
    [22] LI L Y. A pore size distribution-based chloride transport model in concrete[J]. Magazine of Concrete Research, 2014, 66(18):937-947.
    [23] ACHOUR M, BIGNONNET F, BARTHÉLÉMY J F, et al. Multi-scale modeling of the chloride diffusivity and the elasticity of Portland cement paste[J]. Construction and Building Materials, 2020, 234:117124.
    [24] HUANG Q H, JIANG Z L, GU X L, et al. Numerical simulation of moisture transport in concrete based on a pore size distribution model[J]. Cement and Concrete Research, 2015, 67:31-43.
    [25] JIANG Z L, XI Y P, GU X L, et al. Modelling of water vapour sorption hysteresis of cement-based materials based on pore size distribution[J]. Cement and Concrete Research, 2019, 115:8-19.
    [26] XIONG Q X, MEFTAH F. Determination on pore size distribution by a probabilistic porous network subjected to salt precipitation and dissolution[J]. Computational Materials Science, 2021, 195:110491.
    [27] 童良玉, 刘清风. 考虑时变孔隙结构的非饱和混凝土扩散性能预测模型[J]. 硅酸盐学报, 2023, 51(8):1950-1961.TONG Liangyu, LIU Qingfeng. Prediction model for diffusivity of unsaturated concrete by considering time-varying pore structure[J]. Journal of the Chinese Ceramic Society, 2023, 51(8), 1950-1961. (in Chinese)
    [28] ZHANG Y, YANG Z X, YE G. Dependence of unsaturated chloride diffusion on the pore structure in cementitious materials[J]. Cement and Concrete Research, 2020, 127:105919.
    [29] ZHANG Y, YE G. A model for predicting the relative chloride diffusion coefficient in unsaturated cementitious materials[J]. Cement and Concrete Research, 2019, 115:133-144.
    [30] LIU C, ZHANG M Z. Multiscale modelling of ionic diffusivity in unsaturated concrete accounting for its hierarchical microstructure[J]. Cement and Concrete Research, 2022, 156:106766.
    [31] STEINER S, LOTHENBACH B, PROSKE T, et al. Effect of relative humidity on the carbonation rate of portlandite, calcium silicate hydrates and ettringite[J]. Cement and Concrete Research, 2020, 135:106116.
    [32] ŠAVIJA B, LUKOVIĆ M. Carbonation of cement paste:Understanding, challenges, and opportunities[J]. Construction and Building Materials, 2016, 117:285-301.
    [33] 司秀勇, 户伟华, 潘慧敏. 矿物掺合料混凝土抗碳化性能及预测模型[J]. 混凝土, 2024(1):17-20, 27.SI Xiuyong, HU Weihua, PAN Huimin. Carbonation resistance and prediction model of mineral admixture concrete[J]. Concrete, 2024(1):17-20, 27. (in Chinese)
    [34] TONG L Y, XIONG Q X, ZHANG Z D, et al. A novel lattice model to predict chloride diffusion coefficient of unsaturated cementitious materials based on multi-typed pore structure characteristics[J]. Cement and Concrete Research, 2024, 176:107351.
    [35] MENG Z Z, LIU Q F, XIA J, et al. Mechanical- transport-chemical modeling of electrochemical repair methods for corrosion‐induced cracking in marine concrete[J]. Computer‐Aided Civil and Infrastructure Engineering, 2022, 37(14):1854-1874.
    [36] KADDAH F, RANAIVOMANANA H, AMIRI O, et al. Accelerated carbonation of recycled concrete aggregates:Investigation on the microstructure and transport properties at cement paste and mortar scales[J]. Journal of CO2 Utilization, 2022, 57:101885.
    [37] XIONG Q X, TONG L Y, ZHANG Z, et al. A new analytical method to predict permeability properties of cementitious mortars:The impacts of pore structure evolutions and relative humidity variations[J]. Cement and Concrete Composites, 2023, 137:104912.
    [38] XIONG Q X, TONG L Y, MEFTAH F, et al. Improved predictions of permeability properties in cement-based materials:A comparative study of pore size distribution-based models[J]. Construction and Building Materials, 2024, 411:133927.
    [39] REN F Z, CHEN X Y, ZENG Q, et al. Effects of pure carbonation on pore structure and water permeability of white cement mortars[J]. Cement, 2022, 9:100040.
    [40] HREN M, BOKAN BOSILJKOV V, LEGAT A. Effects of blended cements and carbonation on chloride-induced corrosion propagation[J]. Cement and Concrete Research, 2021, 145:106458.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

童良玉,刘清风.碳化对水泥基材料孔径分布及渗透速率影响的数值研究[J].建筑材料学报,2024,27(10):879-886

复制
分享
文章指标
  • 点击次数:148
  • 下载次数: 127
  • HTML阅读次数: 11
  • 引用次数: 0
历史
  • 收稿日期:2024-04-09
  • 最后修改日期:2024-04-29
  • 在线发布日期: 2024-11-08
文章二维码