生物炭对碳化钢渣活性提升的机理研究
作者:
作者单位:

1.哈尔滨工业大学 土木工程学院,黑龙江 哈尔滨 150090;2.哈尔滨工业大学 结构工程灾变与控制教育部重点实验室,黑龙江 哈尔滨 150090

作者简介:

李林珊(1997—),女,广西贺州人,哈尔滨工业大学博士生.E-mail:lls970310@163.com

通讯作者:

高小建(1976—),男,陕西白水人,哈尔滨工业大学教授,博士生导师,博士.E-mail:gaoxj@hit.edu.cn

中图分类号:

TU528.09

基金项目:

国家自然科学基金资助项目(U23A20560,52108202);黑龙江省自然科学基金资助项目(LH2023E120);浙江省科技计划项目(2024C03286(SD2))


Mechanism of Biochar Improving Activity of Carbonated Steel Slag
Author:
Affiliation:

1.School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China;2.Key Lab of Structural Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对湿法碳化钢渣存在的水化活性受抑制以及固碳量不高等问题,提出了添加生物炭进行改性的研究思路.结果表明:生物炭有效提升了碳化钢渣的水化活性与CO2反应性;与仅使用碳化钢渣的样品相比,利用生物碳和湿法碳化钢渣协同制备的活性矿物浆料,试件在7 d时的抗压强大提升了21.5%,CaCO3的含量增加了25.1%;生物炭与湿法碳化钢渣协同作用有效地细化了试件的孔结构,增加了水化产物的含量且加速了早期的水化放热,因此钢渣的水化活性得到进一步提高;生物炭独特的疏松多孔结构有利于CaCO3在试件孔隙中均匀沉淀,使CaCO3的成核效应和填充效应得以更好地发挥.

    Abstract:

    A research direction of using biochar to modify aqueous carbonated steel slag is proposed to address the issues of suppressed hydration activity and low CO2 sequestration of steel slag. The results show that biochar effectively enhances the hydration activity and CO2 reactivity of carbonated steel slag;and compared to samples that solely use carbide steel slag,the compressive strength of the active mineral slurry prepared through the synergistic use of biochar and wet-process carbide steel slay has increased by 21.5% at 7 d,with a 25.1% increase in CaCO3 content. The synergistic effect of biochar and aqueous carbonated steel slag effectively refines the pore structure of the specimens, increases the amount of hydration products, and accelerates the early hydration heat release, thereby further improving the hydration activity of steel slag. The unique loose and porous structure of biochar facilitates the uniform precipitation of CaCO3 in the pores of specimens, allowing for better nucleation and filling effects of CaCO3.

    表 1 原材料的化学组成Table 1 Chemical composition (by mass) of raw materials
    表 2 矿物浆料的配比以及命名Table 2 Naming and mix proportion of mineral slurry
    图1 原材料的粒度分布Fig.1 Particle size distribution of raw materials
    图2 钢渣的XRD图谱Fig.2 XRD pattern of steel slag
    图3 不同龄期的水泥试件抗压强度Fig.3 Compressive strength of cement specimens at different ages
    图4 碳化处理前后钢渣以及生物炭颗粒的表面形貌Fig.4 Morphology of steel slag and biochar before and after carbonation treatment
    图5 矿物浆料的pH值Fig.5 pH value of mineral slurries
    图6 不同矿物浆料的水化热演化过程Fig.6 Hydration heat evolution of different mineral slurries
    图7 不同矿物浆料配制的水泥试件孔隙结构Fig.7 Pore structure of cement specimens made by different mineral slurries
    图8 矿物浆料的 TG-DTG 测试结果Fig.8 TG-DTG results of mineral slurries
    参考文献
    引证文献
引用本文

李林珊,陈铁锋,高小建.生物炭对碳化钢渣活性提升的机理研究[J].建筑材料学报,2024,27(10):962-968

复制
分享
文章指标
  • 点击次数:146
  • 下载次数: 63
  • HTML阅读次数: 4
  • 引用次数: 0
历史
  • 收稿日期:2024-03-21
  • 最后修改日期:2024-05-17
  • 在线发布日期: 2024-11-08
文章二维码