水胶比对碱激发矿渣早期反应动力学的影响
作者:
作者单位:

青岛理工大学 土木工程学院, 山东 青岛 266520

作者简介:

张兆瑞 (1995—),男,山东菏泽人,青岛理工大学博士生.E-mail:zhangzhaoruisdhz@163.com

通讯作者:

金祖权(1977—),男,四川阆中人,青岛理工大学教授,博士生导师,博士.E-mail:jinzuquan@126.com

中图分类号:

TU521

基金项目:

国家自然科学基金资助项目(52078259);交通运输行业重点项目(2021-ZD1-012)


Effect of Water-Binder Ratio on Early Reaction Kinetics of Alkali-Activated Slag
Author:
Affiliation:

School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为研究水胶比对碱激发矿渣早期反应动力学的影响,采用1H低场核磁共振测试了矿渣浆体碱激发3 d的横向弛豫时间与不同状态水相对含量的变化,并通过29Si魔角自旋核磁共振、等温量热、热重分析和傅里叶变换红外光谱测试,揭示了早期矿渣碱激发过程的机理. 结果表明:不同水胶比下矿渣浆体的横向弛豫时间随着碱激发反应的进行逐渐减小,可动水逐渐转化为不可动水;在碱激发3 d时,随着水胶比的增加,高聚合度碱激发产物增加;[AlO4-四面体提高了[SiO44-四面体的聚合程度和连接作用.

    Abstract:

    To investigate the effect of water-binder ratio on the early reaction kinetics of alkali-activated slag, 1H low-field nuclear magnetic resonance was used to measure the transverse relaxation time of the slag slurry in the first 3 d of alkali-activation and the relative content changes of water in different states. 29Si magic-angle spinning nuclear magnetic resonance, isothermal calorimetry, thermogravimetric analysis and Fourier transform infrared spectroscopy were used to reveal the reaction mechanism of slag alkali-activated at the early stage. The results show that the transverse relaxation time of slag slurry under different water-binder ratio conditions decreases gradually with the alkali-activated reaction, and the movable water is gradually transformed to immovable. After 3 d of alkaline-activation, the high degree polymerization of alkaline-activated products increases with the increase in water-binder ratio. [AlO4- tetrahedra increase the degree of polymerization and linkage of [SiO44- tetrahedra.

    图1 矿渣的SEM照片和XRD图谱Fig.1 SEM image and XRD pattern of slag
    图2 矿渣浆体的T2分布Fig.2 T2 distributions of slag pastes
    图3 不同mW/mB下矿渣碱激发3 d时的29Si 魔角自旋核磁共振谱Fig.3 29Si magic-angle spinning nuclear magnetic resonance spectra of slag with different mW/mB under 3 d of alkali-activation
    图4 矿渣浆体的放热曲线Fig.4 Heat release curves of slag pastes
    图5 不同mW/mB矿渣浆体碱激发2 h的TG数据Fig.5 TG data of slag pastes with different mW/mB under 2 h of alkali-activation
    图6 矿渣浆体在不同碱激发时间下的FTIR图谱Fig.6 FTIR spectra of slag pastes at different alkali-activation time(mW/mB=0.45)
    图7 矿渣浆体碱激发3 d时T2wav与累计碱激发放热量的比较Fig.7 Comparison between T2wav and cumulative heat of alkali-activated of slag paste at alkali-activated 3 d
    图8 2种测试方法之间的关系Fig.8 Relationship between two testing methods
    表 1 矿渣的化学组成Table 1 Chemical composition(by mass) of slag
    表 2 矿渣浆体的配合比Table 2 Mix proportions of slag pastes
    表 3 不同mW/mB矿渣浆体中不动水和可动水含量随时间的变化Table 3 Time-dependent variation of immovable and mobile water contents(by mass) of slag pastes with different mW/mB
    图1 矿渣的SEM照片和XRD图谱Fig.1 SEM image and XRD pattern of slag
    图2 矿渣浆体的T2分布Fig.2 T2 distributions of slag pastes
    图3 不同mW/mB下矿渣碱激发3 d时的29Si 魔角自旋核磁共振谱Fig.3 29Si magic-angle spinning nuclear magnetic resonance spectra of slag with different mW/mB under 3 d of alkali-activation
    图4 矿渣浆体的放热曲线Fig.4 Heat release curves of slag pastes
    图5 不同mW/mB矿渣浆体碱激发2 h的TG数据Fig.5 TG data of slag pastes with different mW/mB under 2 h of alkali-activation
    图6 矿渣浆体在不同碱激发时间下的FTIR图谱Fig.6 FTIR spectra of slag pastes at different alkali-activation time(mW/mB=0.45)
    图7 矿渣浆体碱激发3 d时T2wav与累计碱激发放热量的比较Fig.7 Comparison between T2wav and cumulative heat of alkali-activated of slag paste at alkali-activated 3 d
    图8 2种测试方法之间的关系Fig.8 Relationship between two testing methods
    表 1 矿渣的化学组成Table 1 Chemical composition(by mass) of slag
    表 2 矿渣浆体的配合比Table 2 Mix proportions of slag pastes
    表 3 不同mW/mB矿渣浆体中不动水和可动水含量随时间的变化Table 3 Time-dependent variation of immovable and mobile water contents(by mass) of slag pastes with different mW/mB
    参考文献
    [1] 左义兵, 廖宜顺, 叶光. 盐耦合侵蚀下碱矿渣水泥相演变的热力学模拟[J]. 建筑材料学报, 2023, 26(1):7-13.ZUO Yibing, LIAO Yishun, YE Guang. Thermodynamic modelling of phase evolution in alkali-activated slag cement upon combined attack of salts[J]. Journal of Building Materials, 2023, 26(1):7-13. (in Chinese)
    [2] 张勇, 方宇迟, 徐轶扬, 等. 双电层对碱矿渣胶凝材料氯离子传输的影响[J]. 建筑材料学报, 2023, 26(9):949-954.ZHANG Yong, FANG Yuchi, XU Yiyang, et al. Effect of electrical double layer on chloride transport in alkali-activated slag cementitious materials[J]. Journal of Building Materials, 2023, 26(9):949-954. (in Chinese)
    [3] 李青, 姚凯, 李俊潼, 等. 氢氧化钙对碱矿渣材料硫酸盐结晶破坏的抑制机理[J]. 建筑材料学报, 2023, 26(4):437-442.LI Qing, YAO Kai, LI Juntong, et al. Inhibition mechanism of calcium hydroxide on sulfate crystallization damage of alkali-activated slag materials[J]. Journal of Building Materials, 2023, 26(4):437-442. (in Chinese)
    [4] 孙振, 李亚林, 贝阳, 等. 纤维增强珊瑚骨料混凝土劈裂抗拉强度预测及特征分析[J/OL]. 应用基础与工程科学学报, 2024:1-12[20240609]. https://link.cnki.net/urlid/11.3242.TB.20240508.1658.002.SUN Zhen, LI Yalin, BEI Yang, et al. Splitting tensile strength prediction and characteristic analysis of fiber reinforced coral aggregate concrete[J/OL]. Journal of Basic Science and Engineering, 2024:1-12[20240609]. https://link.cnki.net/urlid/11.3242.TB.20240508.1658.002.(in Chinese)
    [5] 王永辉, 陈佩圆, 张立恒, 等. MgO/硅酸钠复合对碱矿渣水化和力学特性的影响[J]. 建筑材料学报, 2023, 26(2):186-192.WANG Yonghui, CHEN Peiyuan, ZHANG Liheng, et al. Effect of MgO/sodium silicate composite activator on hydration and mechanical properties of alkali-activated slag materials[J]. Journal of Building Materials, 2023, 26(2):186-192. (in Chinese)
    [6] ZHAG Z H, YAO X, ZHU H J, et al. Role of water in the synthesis of calcined kaolin-based geopolymer[J]. Applied Clay Science, 2009, 43(2):218-223.
    [7] 王德强, 孙振平, 杨海静, 等. 质子低场核磁共振技术表征建筑石膏水化进程[J]. 建筑材料学报, 2023, 26(8):879-885.WANG Deqiang, SUN Zhenping, YANG Haijing, et al. Characterization of building gypsum hydration process by 1H low-field NMR[J]. Journal of Building Materials, 2023, 26(8):879-885. (in Chinese)
    [8] 佘安明, 马坤, 王中平, 等. 低场核磁共振低温测孔技术表征硬化水泥浆体孔结构[J]. 建筑材料学报, 2021, 24(5):916-920.SHE Anming, MA Kun, WANG Zhongping, et al. Characterization of pore structure in hardened cement paste by low field NMR cryoporometry[J]. Journal of Building Materials, 2021, 24(5):916-920. (in Chinese)
    [9] ZHANG P, WANG P G, HOU D S, et al. Application of neutron radiography in observing and quantifying the time-dependent moisture distributions in multi-cracked cement-based composites[J]. Cement and Concrete Composites, 2017, 78:13-20.
    [10] CASLER C. Infrared thermography:A tool for locating moisture infiltration in masonry walls[J]. Concrete International, 2005, 27(8):45-48.
    [11] CONG X Y, ZHOU W, GENG X R, et al. Low field NMR relaxation as a probe to study the effect of activators and retarders on the alkali-activated GGBFS setting process[J]. Cement and Concrete Composites, 2019, 104:103399.
    [12] ZHANG D W, ZHAO K F, WANG D M, et al. Relationship of amorphous gel-microstructure-elastoviscosity properties of alkali-activated materials fresh pastes with different Ms waterglass[J]. Construction and Building Materials, 2021, 287:123023.
    [13] JIANG D B, LI X G, LÜ Y, et al. Autogenous shrinkage and hydration property of alkali activated slag pastes containing superabsorbent polymer[J]. Cement and Concrete Research, 2021, 149:106581.
    [14] YE H L, HUANG L, CHEN Z J. Influence of activator composition on the chloride binding capacity of alkali-activated slag[J]. Cement and Concrete Composites, 2019, 104:103368.
    [15] BERNAL S A, PROVIS J L, ROSE V, et al. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends[J]. Cement and Concrete Composites, 2011, 33(1):46-54.
    [16] LIU Y W, LU C F, HU X, et al. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends[J]. Cement and Concrete Research, 2023, 174:107336.
    [17] LU C F, ZHANG Z H, HU J, et al. Relationship between rheological property and early age-microstructure building up of alkali-activated slag[J]. Composites Part B:Engineering, 2022, 247:110271.
    [18] LIANG G W, TAO W, SHE A M. New insights into the early-age reaction kinetics of metakaolin geopolymer by 1H low-field NMR and isothermal calorimetry[J]. Cement and Concrete Composites, 2023, 137:104932.
    [19] CAO R L, ZHANG Z H, ZHANG Y M, et al. Relaxation characteristics and state evolution of water during the early-age reaction of alkali-activated slag as monitored by low field nuclear magnetic resonance[J]. Composites Part B:Engineering, 2022, 242:110025.
    [20] 姚武, 佘安明, 杨培强. 水泥浆体中可蒸发水的 1H 核磁共振弛豫特征及状态演变[J]. 硅酸盐学报, 2009, 37(10):1602-1606.YAO Wu, SHE Anming, YANG Peiqiang. 1H-NMR relaxation and state evolvement of evaporable water in cement pastes[J]. Journal of the Chinese Ceramic Society, 2009, 37(10) 1602-1606. (in Chinese)
    [21] SNOECK D, PEL L, DE BELIE N. Superabsorbent polymers to mitigate plastic drying shrinkage in a cement paste as studied by NMR[J]. Cement and Concrete Composites, 2018, 93:54-62.
    [22] CAO R L, ZHANG S Q, BANTHIA N, et al. Interpreting the early-age reaction process of alkali-activated slag by using combined embedded ultrasonic measurement, thermal analysis, XRD, FTIR and SEM[J]. Composites Part B:Engineering, 2020, 186:107840.
    [23] PROVIS J L, BERNAL S A. Geopolymers and related alkali-activated materials[J]. Annual Review of Materials Research, 2014, 44:299-327.
    [24] JIANG D D, ZHANG Z H, SHI C J. Evolution of silicate species from waterglass in waterglass activated slag(WAS) pastes at early age[J]. Cement and Concrete Research, 2024, 180:107513.
    [25] LIU C, LI Z M, NIE S, et al. Structural evolution of calcium sodium aluminosilicate hydrate (C-(N-)A-S-H) gels induced by water exposure:The impact of Na leaching[J]. Cement and Concrete Research, 2024, 178:107432.
    [26] SHI C J, DAY R L. A calorimetric study of early hydration of alkali-slag cements[J]. Cement and Concrete Research, 1995, 25(6):1333-1346.
    [27] BILEK V, NOVOTNY R, KOPLIK J, et al. Philosophy of rational mixture proportioning of alkali-activated materials validated by the hydration kinetics of alkali-activated slag and its microstructure[J]. Cement and Concrete Research, 2023, 168:107139.
    [28] MOHAMED R, RAZAK R A, ABDULLAH M M A B, et al. Heat evolution of alkali-activated materials:A review on influence factors[J]. Construction and Building Materials, 2022, 314:125651.
    [29] SIAKATI C, DOUVALIS A P, HALLET V, et al. Influence of CaO/FeO ratio on the formation mechanism and properties of alkali-activated Fe-rich slags[J]. Cement and Concrete Research, 2021, 146:106466.
    [30] HAHA M BEN, LE SAOUT G, WINNEFELD F, et al. Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags[J]. Cement and Concrete Research, 2011, 41:301-310.
    [31] JOSE I E G, FUENTES A F, GOROKHOVSKY A, et al. Hydration products and reactivity of blast-furnace slag activated by various alkalis[J]. Journal of the American Ceramic Society, 2010, 86(12):2148-2153.
    [32] MOHAMMED B S, HARUNA S, WAHAB M M B A, et al. Optimization and characterization of cast in-situ alkali-activated pastes by response surface methodology[J]. Construction and Building Materials, 2019, 225:776-787.
    [33] CAO R L, LI B G, YOU N Q, et al. Properties of alkali-activated ground granulated blast furnace slag blended with ferronickel slag[J]. Construction and Building Materials, 2018, 192:123-132.
    [34] LIU C, LIANG X H, CHEN Y, et al. Properties of alkali-activated ground granulated blast furnace slag blended with ferronickel slag[J]. Cement and Concrete Composites, 2023, 142:105157.
    [35] GHORBANI S, STEFANINI L, SUN Y B, et al. Characterisation of alkali-activated stainless steel slag and blast-furnace slag cements[J]. Cement and Concrete Composites, 2023, 143:105230.
    [36] PRADHAN S S, MISHRA U, BISWAL S K. Mechanical and microstructural study of slag based alkali activated concrete incorporating RHA[J]. Construction and Building Materials, 2023, 400:132685.
    [37] LIU H, SUN Z P, YANG J B, et al. A novel method for semi-quantitative analysis of hydration degree of cement by 1H low-field NMR[J]. Cement and Concrete Research, 2021, 141:106329.
    [38] 郭晓潞, 施惠生, 夏明. 早期地聚合物反应过程的1H低场核磁共振[J]. 硅酸盐学报, 2015, 43(2):138-143.GUO Xiaolu, SHI Huisheng, XIA Ming. Geopolymerization process at early age by 1H low field nuclear magnetic resonance[J]. Journal of the Chinese Ceramic Society, 2015, 43(2):138-143. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张兆瑞,金祖权,李宁.水胶比对碱激发矿渣早期反应动力学的影响[J].建筑材料学报,2024,27(12):1159-1168

复制
分享
文章指标
  • 点击次数:68
  • 下载次数: 72
  • HTML阅读次数: 3
  • 引用次数: 0
历史
  • 收稿日期:2024-03-10
  • 最后修改日期:2024-04-30
  • 在线发布日期: 2025-01-21
文章二维码