水热固化工艺对固废基人造碎石性能的影响
作者:
作者单位:

1.河海大学 岩土力学与堤坝工程教育部重点实验室,江苏 南京 210098;2.湖州市公路与运输管理中心,浙江 湖州 313099;3.浙江湖杭高速公路有限公司,浙江 杭州 313019

作者简介:

洪寅哲(1998—),男,江苏无锡人,河海大学硕士生.E-mail:hhhyz_08@163.com

通讯作者:

孔纲强(1982—),男,浙江金华人,河海大学教授,博士生导师,博士.E-mail: gqkong1@163.com

中图分类号:

TU526

基金项目:

国家自然科学基金资助项目(52178327)


Influence of Hydrothermal Curing Process on the Properties of Solid Waste Based Artificial Crushed Stone
Author:
Affiliation:

1.Key Laboratory of Geomechanics and Embankment Engineering of Ministry of Education, Hohai University, Nanjing 210098, China;2.Huzhou Highway and Transportation Management Center, Huzhou 313099, China;3.Zhejiang Huhang Expressway Co., Ltd., Hangzhou 313019, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    以工程渣土、电石渣和脱硫石膏等固废为原料,利用水热固化技术制备固废基人造石材,探究水热固化条件对固废基人造石材力学性能和微观孔隙结构的影响规律;开展固废基人造石材的碎石化生产工艺试验,测定并分析了人造碎石与天然碎石物理性能的异同点.结果表明:固废基人造石材的抗压强度随着反应温度和时间的提升先增大、后减小,并随着成型干密度的增大和过筛最大粒径的减小而降低;湿土制样试件因物料结合接触面积不均,水热固化反应不够充分,其抗压强度低于干土制样试件;碎石生产工艺下,固废基人造碎石的吸水率约为21.2%,为天然碎石的4.7倍,压碎性指标约为27.1%,为天然碎石的3.8倍.

    Abstract:

    Using solid waste such as engineering musk, carbide slag, and desulfurization gypsum as raw materials, the solid-waste based artificial crushed stone was prepared through hydrothermal curing technology. The effect of hydrothermal curing conditions on the mechanical properties and microscopic pore structure of the artificial crushed stone was studied. Additionally, experiments on the crushed stone production process of the solid waste-based artificial crushed stone were conducted, and the physical properties of artificial crushed stone and natural crushed stone were measured and compared. The results showed that the compressive strength of the solid waste-based artificial crushed stone initially increased and then decreased with rising reaction temperature and time, while it decreased with increasing dry density and decreasing maximum particle size after sieving. Specimens prepared from wet soil exhibited lower compressive strength than those from dry soil due to uneven contact area and insufficient hydrothermal curing. Under the crushed stone production process, the water absorption rate of the solid waste-based artificial crushed stone was approximately 21.2%, 4.7 times that of natural crushed stone, and its crushing index was about 27.1%, 3.8 times that of natural crushed stone.

    图1 试验原材料形貌Fig.1 Morphology of raw materials
    图2 水热反应时间对人造石材抗压强度的影响Fig.2 Effects of hydrothermal reaction time on compressive strength of artificial stone
    图3 水热反应温度对人造石材抗压强度的影响Fig.3 Effects of hydrothermal reaction temperature on compressive strength of artificial stone
    图4 成型干密度对人造石材抗压强度的影响Fig.4 Effects of moulding dry density on compressive strength of artificial stone
    图5 不同成型干密度下人造石材的T2分布曲线和孔隙结构Fig.5 T2 distribution curves and pore structure of artificial stone with different moulding dry densities
    图6 原料过筛最大粒径对人造石材抗压强度的影响Fig.6 Effects of sieved maximum particle size of raw materials on compressive strength of artificial stone
    图7 原料不同过筛最大粒径下人造石材的T2曲线和孔结构Fig.7 T2 distribution curves and pore structure of artificial stone under different sieved maximum particle sizes of raw materials
    图8 不同制样方式下混合料形貌Fig.8 Morphology of mixtures with different sample preparation methods
    图9 不同制样方式下人造石材的XRD图谱Fig.9 XRD patterns of artificial stone under different sample preparation methods
    图10 不同制样方式下人造石材的T2曲线和孔隙结构Fig.10 T2 distribution curves and pore structure of artificial stone with different sample preparation methods
    图11 固废基人造碎石制备流程Fig.11 Solid waste based artificial crushed stone preparation process
    表 1 原材料的化学组成Table 1 Chemical compositions(by mass) of raw materials
    表 2 基于固废的人造石材的试验工况Table 2 Test conditions of solid waste based artificial stones
    表 3 颚式破碎后固废基人造碎石颗粒的累计筛余Table 3 Accumulated sieve residue of solid waste based artificial crushed stone after jaw crushing
    参考文献
    [1] YE W L, LI S, QIU T R, et al. Effects of plastic coating on the physical and mechanical properties of the artificial aggregate made by fly ash[J]. Journal of Cleaner Production, 2022, 360:132187.
    [2] 刘军, 李振林, 张伟卓, 等. 工业固体废弃物材料制作冷粘结人造轻骨料的研究进展[J]. 材料导报, 2023, 37(18):21090269.LIU Jun, LI Zhenlin, ZHANG Weizhuo, et al. Research adavances in cold-bonded artificial lightweight aggregates made from industrial solid waste materials[J]. Materials Reports, 2023, 37(18):21090269. (in Chinese)
    [3] LIU G, HE M H, CHEN H, et al. Study on the curing conditions on the physico-mechanical and environmental performance of phosphogypsum-based artificial aggregates[J]. Construction and Building Materials, 2024, 415:135030.
    [4] LIN M G, CHEN G, CHEN Y H, et al. Hydrothermal solidification of alkali-activated clay-slaked lime mixtures[J]. Construction and Building Materials, 2022, 325:126660.
    [5] 佟钰, 田鑫, 张君男, 等. 废弃混凝土的水热固化与力学强度[J]. 环境工程学报, 2016, 10(7):3805-3810.TONG Yu, TIAN Xin, ZHANG Junnan, et al. Hydrothermal solidification of discarded concrete and its mechanical strength[J]. Chinese Journal of Environmental Engineering, 2016, 10(7):3805-3810. (in Chinese)
    [6] 兰浩然, 景镇子, 萧礼标, 等. 陶瓷废料水热固化技术在室内薄板材料上的应用[J]. 建筑材料学报, 2020, 23(4):882-888.LAN Haoran, JING Zhenzi, XIAO Libiao, et al. Application of hydrothermal curing technology of ceramic waste in indoor sheet materials[J]. Journal of Building Materials, 2020, 23(4):882-888. (in Chinese)
    [7] ZHU W H, LI J, ZHANG Y F , et al. Hydrothermal synthesis of a novel ecological revetment material by sediment mixed with biochar[J]. Journal of Cleaner Production, 2021, 326:129380.
    [8] 孔纲强, 虞杨, 陈永辉, 等. 玄武岩粉末-电石渣-脱硫石膏水热固化机理分析[J]. 建筑材料学报, 2023, 26(4):389-396,428.KONG Gangqiang, YU Yang, CHEN Yonghui, et al. Hydrothermal solidification mechanism of basalt powder-carbide slag-desulfurized gypsum system[J]. Journal of Building Materials, 2023, 26(4):389-396,428. (in Chinese)
    [9] 王德强, 孙振平, 杨海静, 等. 质子低场核磁共振技术表征建筑石膏水化进程[J]. 建筑材料学报, 2023, 26(8):879-885.WANG Deqiang, SUN Zhenping, YANG Haijing, et al. Characterization of building gypsum hydration process by 1H low-field NMR[J]. Journal of Building Materials, 2023, 26(8):879-885. (in Chinese)
    [10] 董伟, 王雪松, 计亚静, 等.碳化-盐冻作用下风积沙混凝土损伤劣化机理及寿命预测[J]. 建筑材料学报, 2023, 26(6):623-630,637.DONG Wei, WANG Xuesong, JI Yajing, et al. Damage deterioration mechanism and life prediction of aeolian sand concrete under carbonization and salt freezing[J]. Journal of Building Materials, 2023, 26(6):623-630,637. (in Chinese)
    [11] CHEN G, LIN M G, CHEN Y H, et al. Alkali-reinforced hydrothermal solidification of waste soil[J]. Materials Chemistry and Physics, 2022, 289:126565.
    [12] CAI L X, DING L Y, LUO H B, et al. Preparation of autoclave concrete from basaltic lunar regolith simulant:Effect of mixture and manufacture process[J]. Construction and Building Materials, 2019, 207:373-386.
    [13] 佟钰, 刘俊秀, 夏枫, 等. 硼泥的水热固化机理与抗压强度[J]. 环境工程学报, 2015, 9(12):6090-6096.TONG Yu, LIU Junxiu, XIA Feng, et al. Reaction mechanism and compressive strength of hydrothermally solidified boron mud[J]. Chinese Journal of Environmental Engineering, 2015, 9(12):6090-6096. (in Chinese)
    [14] 裘鹏程, 景镇子, 刘子系, 等. 碳酸钙基建筑材料的水热法制备及硬化机理研究[J]. 建筑材料学报, 2018, 21(2):241-246,313.QIU Pengcheng, JING Zhenzi, LIU Zixi, et al. Wet preparation and hardening mechanism of calcium carbonate based building materials[J]. Journal of Building Materials, 2018, 21(2):241-246,313. (in Chinese)
    [15] NASR D, PAKSHIR H A, GHAYOUR H. The influence of curing conditions and alkaline activator concentration on elevated temperature behavior of alkali activated slag(AAS) mortars[J]. Construction and Building Materials, 2018, 190:108-119.
    [16] JI G X, PENG X Q, WANG S P, et al. Influence of ground quartz sand finesses on the formation of poorly ordered calcium silicate hydrate prepared by dynamically hydrothermal synthesis[J]. Case Studies in Construction Materials, 2024, 20:e02746.
    [17] 彭小芹, 何丽娟, 刘艳萌. 水热法制备水化硅酸钙纳米粉体[J]. 重庆大学学报(自然科学版), 2005, 28(5):59-62.PENG Xiaoqin, HE Lijuan, LIU Yanmeng. Hydrated calcium silicate with nm-order size manufactured by using dynamic autoclaved technology[J]. Journal of Chongqing University(Natural Science), 2005, 28(5):59-62. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

洪寅哲,孔纲强,陈永辉,褚莉花,罗杰.水热固化工艺对固废基人造碎石性能的影响[J].建筑材料学报,2025,28(2):184-192

复制
分享
文章指标
  • 点击次数:23
  • 下载次数: 37
  • HTML阅读次数: 1
  • 引用次数: 0
历史
  • 收稿日期:2024-02-28
  • 最后修改日期:2024-04-27
  • 在线发布日期: 2025-03-11
文章二维码