基于改进FHP模型的掺火山灰RCC加速养护方法
作者:
作者单位:

中国水利水电第七工程局有限公司,四川 成都 611730

作者简介:

解 悦(1994—),男,四川德阳人,中国水利水电第七工程局有限公司工程师,硕士.E-mail:xieyuecl@163.com

通讯作者:

丁建彤(1970—),男,江苏南京人,中国水利水电第七工程局有限公司正高级工程师,博士.E-mail:concreting@163.com

中图分类号:

TU528.01

基金项目:

中国电力建设集团股份有限公司重点项目(DJ-ZDXM-2021-05)


An Accelerated Curing Method of RCC with Pozzolan Based on Modified FHP Model
Author:
Affiliation:

Sinohydro Bureau 7 Co., Ltd., Chengdu 611730, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    巴基斯坦巴沙大坝工程采用掺天然火山灰的碾压混凝土(RCC),为了快速推定RCC的1 a抗压强度,测试了不同温度下天然火山灰与水泥复合胶凝材料的表观活化能,并尝试采用Freiesleben-Hansen-Pedersen(FHP)模型计算不同加速养护制度下的等效标准养护龄期(等效龄期).结果表明:复合胶凝材料在70~90 ℃下的表观活化能通过试验难以测得,但基于表观活化能的温度依存性,可通过对其5~60 ℃下表观活化能的一元线性回归计算得出,并获得改进FHP模型;基于工程现场测试结果,与FHP模型相比,采用改进FHP模型计算出的90 ℃等效龄期与实测等效龄期的偏差率均在6.7%以内.

    Abstract:

    Roller Compacted Concrete (RCC) incorporating natural pozzolan was used in Bashan Dam project in Pakistan. To rapidly estimate the 1 a compressive strength of the RCC, the apparent activation energy of the composite cementitious material made from natural pozzolan and cement was tested at different temperatures. An attempt was made to use the Freiesleben-Hansen-Pedersen (FHP) model to calculate the equivalent standard curing age(equivalent age) under different accelerated curing regimes. The results indicate that the apparent activation energy of the composite cementitious material at 70-90 ℃ is difficult to be measured experimentally. However, based on the temperature dependence of the apparent activation energy, it can be calculated through univariate linear regression of the apparent activation energy at 5-60 ℃, leading to an improved FHP model. Based on field test results at the project site, compared to the FHP model, the deviation rate of the equivalent age calculated at 90 ℃ using the improved FHP model from the measured equivalent age is controlled to be within 6.7%.

    图1 天然火山灰的矿物组成Fig.1 Mineral composition of natural pozzolan
    图2 砂浆抗压强度与龄期的拟合曲线Fig.2 Fitting curves of compressive strength versus age of mortars
    图3 砂浆 ln k与1/Tr的关系图Fig.3 Plot of ln k versus 1/Tr for mortars
    图4 70~90 ℃下砂浆抗压强度发展Fig.4 Compressive strength development at 70-90 ℃
    图5 标准养护条件下试件的早期抗压强度发展Fig.5 Early compressive strength development of specimens under standard curing condition
    图6 经静停后砂浆的抗压强度-龄期拟合曲线Fig.6 Fitting curves of compressive strength versus age with mortar precuring
    图7 经静停与否的砂浆的孔径分布Fig.7 Pore size distribution of mortars with or without precuring
    图8 经静停与否的砂浆试件在不同龄期时的孔隙率和孔级配Fig.8 Porosity and pore gradation of mortars with or without precuring at different ages
    图9 E0与Tr关系的回归分析Fig.9 Regression analysis of the relationship between E0 and Tr
    表 1 ASKARI LAC水泥的物理性能Table 1 Physical properties of ASKARI LAC cement
    表 2 ASKARI LAC水泥的化学和矿物组成Table 2 Chemical and mineral composition(by mass) of ASKARI LAC cement
    表 3 天然火山灰的物理性能Table 3 Physical properties of natural pozzolan
    表 4 RCC配合比Table 4 Mix proportion of RCC
    表 5 砂浆配合比Table 5 Mix proportion of mortar
    表 6 不同加速养护制度Table 6 Different accelerated curing regimes
    表 7 实际工程中的RCC抗压强度统计结果Table 7 Statistical results of RCC compressive strength in practical engineering
    表 8 不同养护制度下的RCC平均强度增长率Table 8 Average growth rates of RCC compressive strength at different curing regimes
    表 9 计算等效龄期与实测等效龄期的对比Table 9 Comparison of calculated and actual equivalent ages
    表 11 不同水胶比及胶凝材料组成下的表观活化能Table 11 Apparent activation energies at different mW/mB and cementitious material compositions[25]
    参考文献
    [1] NURSE R W. Steam curing of concrete[J]. Magazine of Concrete Research, 1949, 1(2):79-88.
    [2] SAUL A G A. Principles underlying the steam curing of concrete at atmospheric preasure[J]. Magazine of Concrete Research, 1951, 2(6):127-140.
    [3] HEWLETT P.Lea's chemistry of cement and concrete[M]. Amsterdam:Elsevier Butterworth Heinemann, 2004:345-347.
    [4] HANSEN P F, PEDERSEN E J. Maturity computer for controlled curing and hardening of concrete strength[J]. Nordik Betong, 1977, 21(1):19-34.
    [5] 祝小靓. 实际温度和约束下微膨胀抗冲磨混凝土抗裂机理研究[D]. 南京:南京水利科学研究院, 2015.ZHU Xiaoliang. Crack-resistant mechanism of expansive abrasion-resistant concrete under simulated in-situ temperature history and constraint[D]. Nanjing:Nanjing Hydraulic Research Institute, 2015. (in Chinese)
    [6] YANG K H, MUN J S, KIM D G,et al. Comparison of strength-maturity models accounting for hydration heat in massive walls[J]. International Journal of Concrete Structures and Materials, 2016, 10(1):47-60.
    [7] MYERS J J. The use of maturity methods as a quality control tool for high performance concrete bridge decks[C]// PCI/FHWA/FIB International Symposium on High Performance Concrete. Chicago: Precast/Prestress Concrete Institute, 2000:25-27.
    [8] CARINO N J, TANK R C. Maturity functions for concretes made with various cements and admixtures[J]. ACI Materials Journal, 1992, 89(2):188-196.
    [9] CARINO N J. The maturity method:Theory and application[J]. Cement Concrete and Aggregates, 1984, 6(2):61-73.
    [10] BENTZ D P. Activation energies of high-volume fly ash ternary blends:Hydration and setting[J]. Cement and Concrete Composites, 2014, 53:214-223.
    [11] LEE C H, HOVER K C. Influence of datum temperature and activation energy on maturity strength predictions[J]. ACI Materials Journal, 2015, 112(6):781-790.
    [12] KIM J K, HAN S H, LEE K M. Estimation of compressive strength by a new apparent activation energy function[J]. Cement and Concrete Research, 2001, 31(2):217-225.
    [13] KADA-BENAMEUR H, WIRQUIN E, DUTHOIT B. Determination of apparent activation energy of concrete by isothermal calorimetry[J]. Cement and Concrete Research, 2000, 30(2):301-305.
    [14] 杨建森. 混凝土中钙矾石作用的二重性[J]. 建筑材料学报, 2001, 4(4):362-366.YANG Jiansen. Discussion on the duality of ettringite action in concrete[J]. Journal of Building Materials, 2001, 4(4):362-366. (in Chinese)
    [15] 马昆林, 龙广成, 谢友均. 蒸养混凝土轨道板劣化机理研究[J]. 铁道学报, 2018, 40(8):116-121.MA Kunlin, LONG Guangcheng, XIE Youjun. Deterioration mechanism of steam-cured concrete track slab[J]. Journal of the China Railway Society, 2018, 40(8):116-121. (in Chinese)
    [16] 彭波. 蒸养制度对高强混凝土性能的影响[D]. 武汉:武汉理工大学, 2007.PENG Bo. Influence of steam-curing system on the performance of high strength concrete[D]. Wuhan:Wuhan University of Technology, 2007. (in Chinese)
    [17] 贺智敏. 蒸养混凝土的热损伤效应及其改善措施研究[D]. 长沙:中南大学, 2012.HE Zhiming. Heat damage effects of steam curing on concrete and corresponding improvement measures[D]. Changsha:Central South University, 2012. (in Chinese)
    [18] 张增起, 石梦晓, 王强, 等. 等效龄期法在大体积混凝土性能预测中的准确性[J]. 清华大学学报(自然科学版), 2016, 56(8):806-810.ZHANG Zengqi, SHI Mengxiao, WANG Qiang, et al. Accuracy of equivalent age method for predicing mass concrete properties[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(8):806-810. (in Chinese)
    [19] KJELLSEN K O, DETWILER R J. Later ages strength prediction by a modified maturity method[J]. ACI Materials Journal, 1993, 90(3):220-227.
    [20] KLIEGER P. Effect of mixing and curing temperature on concrete strength[J]. ACI Materials Journal, 1958, 54(1):1063-1074.
    [21] KIM J K, MOON Y H, EO S H. Compressive strength development of concrete with different curing time and temperature[J]. Cement and Concrete Research, 1998, 28(12):1761-1773.
    [22] BROOKS J J, AI-KAISI A F. Early strength development of Portland and slag cement concretes cured at elevated temperatures[J]. ACI Materials Journal, 1990, 87(5):503-506.
    [23] TANK R C, CARINO N J. Rate constant functions for strength development of concrete[J]. ACI Materials Journal, 1991, 88(1):74-83.
    [24] GUO C J. Maturity of concrete:Method for predicting early-stage strength[J]. ACI Materials Journal, 1989, 86(4):341-353.
    [25] WADE S A. Evaluation of the maturity method to estimate concrete strength[D]. Auburn:Auburn University, 2005.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

解悦,龚英,丁建彤,雷英强,许文英.基于改进FHP模型的掺火山灰RCC加速养护方法[J].建筑材料学报,2025,28(2):135-143

复制
分享
文章指标
  • 点击次数:23
  • 下载次数: 33
  • HTML阅读次数: 4
  • 引用次数: 0
历史
  • 收稿日期:2024-02-27
  • 最后修改日期:2024-05-09
  • 在线发布日期: 2025-03-11
文章二维码