偏高岭土改性NaOH预处理橡胶混凝土抗盐冻性能及寿命预测
作者:
作者单位:

1.中交路桥华北工程有限公司,北京 101100;2.内蒙古大学 交通学院,内蒙古 呼和浩特 010070

作者简介:

兰 锦(1977—),男,北京人,中交路桥华北工程有限公司高级工程师,硕士.E-mail:1203908214@qq.com

通讯作者:

张 宏(1978—),男,内蒙古乌兰察布人,内蒙古大学教授,博士生导师,博士.E-mail:zhanghong3537@126.com

中图分类号:

TU528.37

基金项目:

国家自然科学基金资助项目(51968053,52268071);内蒙古自治区杰出青年基金资助项目(2023JQ03);内蒙古大学高层次人才科研启动基金项目(10000-22311201/008)


Salt Freezing Resistance and Life Prediction of Metakaolin Modified NaOH Pretreated Rubber Concrete
Author:
Affiliation:

1.China Communications Road and Bridge North China Engineering Co., Ltd., Beijing 101100, China;2.Transportation Institute, Inner Mongolia University, Hohhot 010070, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    利用氯盐与冻融循环耦合的方式模拟盐冻环境,探究了盐冻过程中偏高岭土(MK)对NaOH预处理橡胶混凝土物理力学性能及使用寿命的影响.结果表明:在盐冻过程中,改性橡胶混凝土的物理力学性能明显优于橡胶混凝土;MK增加了水化产物总量,细化了孔隙结构,增加了水分在混凝土内的迁移难度,加之橡胶颗粒自身弹性对冻胀应力的消解作用,因而降低了改性橡胶混凝土在盐冻环境中的损伤程度;当MK掺量为15%时,改性橡胶混凝土的抗盐冻性能最佳,其Weibull函数预测寿命可达475次冻融循环.

    Abstract:

    The coupling of chloride salt and freeze-thaw cycle was used to simulate the salt freezing environment. The effects of metakaolin(MK) on the physical and mechanical properties of NaOH pretreated rubber concrete during salt freezing were studied, as well as its service life. The results indicate that modified rubber concrete exhibits significantly better physical and mechanical properties than rubber concrete during salt freezing. MK significantly increases the total amount of hydration products, refines the pore structure, and reduces damage to modified rubber concrete in salt freezing environments. The dissolution effect of rubber particle elasticity on frost heave stress is a key factor in achieving this improved performance. The optimal MK content for achieving the best salt freezing resistance is 15%,which is predicted to result in a Weibull function life of 475 freeze-thaw cycles.

    图1 MK的微观形貌Fig.1 Micromorphology of MK
    图2 橡胶混凝土冻融损伤的表观形态Fig.2 Apparent morphology of freeze-thaw damage of rubber concrete
    图3 橡胶混凝土的质量损失率Fig.3 Mass loss rate of rubber concrete
    图4 橡胶混凝土的抗压强度损失率Fig.4 Loss rate of compressive strength of rubber concrete
    图5 橡胶混凝土的相对动弹性模量Fig.5 Relative dynamic elastic modulus of rubber concrete
    图6 试件RC和MRC15在冻融循环前的微观形貌Fig.6 Microstructure of specimen RC and MRC15 before freeze-thaw cycles
    图7 试件RC和MRC15在冻融循环150次后的微观形貌Fig.7 Microstructure of specimen RC and MRC15 after freeze-thaw cycles(T=150 times)
    图8 试件养护28 d时的TG-DTG曲线Fig.8 TG-DTG curves of specimens at 28 d
    图9 参数拟合图Fig.9 Parameter fitting diagram
    图10 改性橡胶混凝土损伤的概率密度函数Fig.10 Probability density function of modified rubber concrete damage
    图11 改性橡胶混凝土损伤的可靠度曲线Fig.11 Reliability curve of modified rubber concrete damage
    表 1 混凝土的配合比Table 1 Mix proportions of concretes
    表 2 混凝土中水泥石主要水化产物的化学结合水含量Table 2 Chemically bound water content of hydration products of cement stone Unit: %
    表 3 改性橡胶混凝土内部水泥石的孔隙结构参数Table 3 Pore structure parameters of cement stone in modified rubber concrete
    参考文献
    [1] XUE J, SHINOZUKA M. Rubberized concret:A green structural material with enhanced energy-dissipation capability[J]. Construction and Building Materials, 2013, 42:196-204.
    [2] RIDA A A, SALAH A U, MOHAMMED M, et al. Effect of different treatments of crumb rubber on the durability characteristics of rubberized concrete[J]. Construction and Building Materials, 2022, 318:126030.
    [3] 胡艳丽, 高培伟, 李富荣, 等. 不同取代率的橡胶混凝土力学性能试验研究[J]. 建筑材料学报, 2020, 23(1):85-92.HU Yanli, GAO Peiwei, LI Furong, et al. Experimental study on mechanical properties of rubber concrete with different substitution rates[J]. Journal of Building Materials, 2020, 23(1):85-92. (in Chinese).
    [4] 王娟, 王文超, 许耀群,等. 纳米SiO2对橡胶混凝土断裂行为的影响[J]. 建筑材料学报, 2023, 26(7):731-738.WANG Juan, WANG Wenchao, XU Yaoqun, et al. The effect of nano-SiO2 on the fracture behavior of rubber concrete[J]. Journal of Building Materials, 2023, 26(7):731-738. (in Chinese)
    [5] GÜNEYISI E, GESOĞLU M, ÖZTURAN T. Properties of rubberized concretes containing silica fume[J]. Cement and Concrete Research, 2004, 34(12):2309-2317.
    [6] 王恒, 徐义华, 姚韦靖, 等. 稻壳灰橡胶混凝土抗冻融性能及微观结构[J]. 复合材料学报, 2023, 40(5):2951-2959.WANG Heng, XU Yihua, YAO Weijing, et al. Freeze-thaw resistance and microstructure of rice husk ash rubber concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(5):2951-2959. (in Chinese)
    [7] 杨长辉, 田义, 王磊, 等. NaOH预处理对橡胶混凝土性能的影响[J]. 土木建筑与环境工程, 2016, 38(2):44-50.YANG Changhui, TIAN Yi, WANG Lei, et al. Effect of NaOH pretreatment on the properties of rubber concrete[J]. Journal of Civil and Environmental Engineering, 2016, 38(2):44-50. (in Chinese)
    [8] 刘誉贵, 马育, 刘攀. 氨化与磺化改性橡胶混凝土机理及强度研究[J]. 材料导报, 2018, 32(18):3142-3145, 3153.LIU Yugui, MA Yu, LIU Pan. Study on the mechanism and strength of ammoniated and sulfonated modified rubber concrete[J]. Material Review, 2018, 32(18):3142-3145, 3153. (in Chinese)
    [9] 姜晓东, 张宏, 李闯, 等. 偏高岭土对NaOH预处理橡胶混凝土力学性能的影响[J]. 建筑材料学报, 2024, 27(7):589-595.JIANG Xiaodong, ZHANG Hong, LI Chuang, et al. The effect of metakaolin on the mechanical properties of NaOH pretreated rubber concrete[J]. Journal of Building Materials, 2024, 27(7):589-595. (in Chinese)
    [10] 王阵地, 姚燕, 王玲. 冻融循环-氯盐侵蚀-荷载耦合作用下混凝土中钢筋的锈蚀行为[J]. 硅酸盐学报, 2011, 39(6):1022-1027.WANG Zhendi, YAO Yan, WANG Ling. Corrosion behavior of steel bars in concrete under freeze-thaw cycles-chloride erosion-load coupling[J]. Journal of the Chinese Ceramic Society, 2011, 39(6):1022-1027. (in Chinese)
    [11] LEI B, LI W G, TANG Z, et al. Durability of recycled aggregate concrete under coupling mechanical loading and freeze-thaw cycle in salt-solution[J]. Construction and Building Materials, 2018, 163:840-849.
    [12] 王阵地, 姚燕, 王玲. 冻融循环与氯盐侵蚀作用下混凝土变形和损伤分析[J]. 硅酸盐学报, 2012, 40(8):1133-1138.WANG Zhendi, YAO Yan, WANG Ling. Deformation and damage analysis of concrete under freeze-thaw cycles and chloride attack[J]. Journal of the Chinese Ceramic Society, 2012, 40(8):1133-1138. (in Chinese)
    [13] 李振霞, 陈渊召, 郭滕滕, 等. 改性橡胶碾压混凝土路用性能及作用机理[J]. 中国公路学报, 2023, 36(5):38-48.LI Zhenxia, CHEN Yuanzhao, GUO Tengteng, et al. Pavement performance and action mechanism of modified rubber roller compacted concrete[J]. China Journal of Highway and Transport, 2023, 36(5):38-48. (in Chinese)
    [14] 郭凯, 佟舟, 张树峰, 等. 冻融与氯盐侵蚀耦合作用下GO-RAC耐久性能研究[J].建筑材料学报,2023, 26(11):1183-1191.GUO Kai, TONG Zhou, ZHANG Shufeng, et al. Study on the durability of GO-RAC under the coupling effect of freeze-thaw and chloride erosion[J]. Journal of Building Materials, 2023, 26(11):1183-1191. (in Chinese)
    [15] CYR M, TRINH M, HUSSON B, et al. Effect of cement type on metakaolin efficiency[J]. Cement and Concrete Research, 2014, 64:63-72.
    [16] 路承功, 魏智强, 乔宏霞, 等. 基于Weibull分布的钢筋混凝土腐蚀环境耐久性寿命预测[J]. 应用基础与工程科学学报, 2022, 30(6):1534-1544.LU Chenggong, WEI Zhiqiang, QIAO Hongxia, et al. Durability life prediction of reinforced concrete in corrosive environment based on Weibull distribution[J]. Journal of Basic Science and Engineering, 2022, 30(6):1534-1544. (in Chinese)
    [17] HUANG J, QIU S C, RODRIGUE D. Parameters estimation and fatigue life prediction of sisal fibre reinforced foam concrete[J]. Journal of Materials Research and Technology, 2022, 20:381-396.
    [18] 王鹏辉, 乔宏霞, 冯琼, 等. 氯氧镁水泥混凝土中涂层钢筋的耐久性退化研究[J]. 建筑材料学报, 2020, 23(3):563-571.WANG Penghui, QIAO Hongxia, FENG Qiong, et al. Study on durability degradation of coated reinforcement in magnesium chloride-cement concrete[J]. Journal of Building Materials, 2020, 23(3):563-571. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

兰锦,张宏,姜晓东,李闯.偏高岭土改性NaOH预处理橡胶混凝土抗盐冻性能及寿命预测[J].建筑材料学报,2025,28(2):176-183

复制
分享
文章指标
  • 点击次数:23
  • 下载次数: 30
  • HTML阅读次数: 1
  • 引用次数: 0
历史
  • 收稿日期:2024-02-27
  • 最后修改日期:2024-04-18
  • 在线发布日期: 2025-03-11
文章二维码