尾矿制备辅助胶凝材料的潜能与机制评述
作者:
作者单位:

1.江西理工大学 资源与环境工程学院,江西 赣州 341000;2.江西省建材科研设计院有限公司,江西 南昌 330001;3.江西理工大学 战略金属矿产资源低碳加工与利用江西省重点实验室,江西 赣州 341000

作者简介:

施麟芸(1988—),女,云南昆明人,江西省建材科研设计院有限公司高级工程师,江西理工大学博士生.E-mail:shilinyun1@163.com

通讯作者:

匡敬忠(1971—),男,江西泰和人,江西理工大学教授,博士生导师,博士.E-mail:jz692@163.com

中图分类号:

TU52

基金项目:

江西省重点研发计划项目(20214BBG74003);“十三五”国家重点研发计划项目(2018YFC1903400)


Review on Potential and Mechanism of Supplementary Cementitious Materials Prepared by Tailings
Author:
  • SHI Linyun 1,2,3

    SHI Linyun

    School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China;Jiangxi Building Materials Industry Research and Design Institute Co., Ltd., Nanchang 330001, China;Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, Jiangxi University of Science and Technology, Ganzhou 341000, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • KUANG Jingzhong 1,3

    KUANG Jingzhong

    School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China;Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, Jiangxi University of Science and Technology, Ganzhou 341000, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Songbai 2

    LIU Songbai

    Jiangxi Building Materials Industry Research and Design Institute Co., Ltd., Nanchang 330001, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China;2.Jiangxi Building Materials Industry Research and Design Institute Co., Ltd., Nanchang 330001, China;3.Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, Jiangxi University of Science and Technology, Ganzhou 341000, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [47]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    将尾矿高效活化制备辅助胶凝材料,对解决矿山环境污染和发展低碳胶凝材料有深远意义.本文归纳了尾矿的矿物属性、活化工艺、活化作用机制与活化辅助胶凝材料性能之间的关系,从矿物学角度全面阐述了尾矿通过物理、化学和表面化学作用产生活性和胶凝性的基本规律,探讨和展望了一种依据尾矿属性分析评价尾矿制备辅助胶凝材料的新思路,为尾矿制备辅助胶凝材料提供了理论和方法支持.

    Abstract:

    Efficient activation of tailings for the production of supplementary cementitious materials(SCM) is of grest significance for solving the problem of mine environmental pollution and developing low-carbon cementitious materials. The relationship between mineralogical attribute, activation method, activation mechanism and performance of SCM prepared by tailings were summarized and evaluated. The activation rule and mechanism of minerals were comprehensively reviewed in a mineralogy viewpoint by chemistry, physics, and surface chemistry. Additionally, a new method was provided to evaluate SCM from tailing based on attribute analysis of tailiings, providing theoretical and methodological support for the preparation of SCM from tailings.

    表 1 制备水泥SCM的尾矿中典型矿物活化反应特征Table 1 Characterization of activated typical minerals in tailing for cement SCM preparation
    表 2 尾矿SCM活性评价方法Table 2 SCM activity evaluation methods of tailings[30,38,45-47]
    图1 尾矿潜在活性分类三元相图Fig.1 Ternary phase diagram of potential activity classification of tailings [7]
    图2 矿物潜在活性分类示意图Fig.2 Schematic diagram of mineral potential activity classification
    图3 尾矿综合分析和活化方法的选择建议Fig.3 Suggestions for comprehensive analysis of tailings and selection of activation method
    图4 尾矿的活化方法Fig.4 Activation methods of tailings
    图5 石英机械活化作用原理图Fig.5 Schematic diagram of mechanical activation of quartz[17]
    参考文献
    [1] YUN W C, YONG J K, CHOI O, et al. Utilization of tailings from tungsten mine waste as a substitution material for cement[J]. Construction and Building Materials, 2009, 23(7):2481-2486.
    [2] ONUAGULUCHI O, EREN O. Cement mixtures containing copper tailings as an additive:Durability properties[J]. Materials Research, 2012, 15:1029-1036.
    [3] SIMONSEN A M T, SOLISMAA S, HANSEN H K, et al. Evaluation of mine tailings’ potential as supplementary cementitious materials based on chemical, mineralogical and physical characteristics[J]. Waste Management, 2020, 102:710-721.
    [4] BAGGER A M T, KUNTHER W, SIGVARDSEN N M, et al. Screening for key material parameters affecting early-age and mechanical properties of blended cementitious binders with mine tailings[J]. Case Studies in Construction Materials, 2021, 15:e00608.
    [5] KIVENTER J, PERUMAL P, YLINIEMI J, et al. Mine tailings as a raw material in alkali activation:A review, international journal of minerals[J]. Metallurgy and Materials, 2020, 27(8):1009-1020.
    [6] SAEDI A, ZANJANI A J, KHODADADI-DARBAN A. A review on different methods of activating tailings to improve their cementitious property as cemented paste and reusability[J]. Journal of Environmental Management, 2020, 270:110881.
    [7] PERUMAL P, KIVENTERÄ J, ILLIKAINEN M. Influence of alkali source on properties of alkali activated silicate tailings[J]. Materials Chemistry and Physics, 2021, 271:124932.
    [8] SICAKOVA A, KOVAC M. Technological characterisation of selected mineral additives[J]. IOP Conference Series:Materials Science and Engineering, 2018, 385(1):0112408.
    [9] SHI C J, ROY D, KRIVENKO P. Alkali-activated cements and concretes[M]. London:CRC Press, 2006:104-126.
    [10] MARUTHUPANDIAN S, CHALIASOU A, KANELLO-POULOS A. Recycling mine tailings as precursors for cementitious binders-Methods, challenges and future outlook[J]. Construction and Building Materials, 2021, 312:125333.
    [11] 姚耿. 机械活化硅质尾矿水化反应特性研究[D]. 青岛:山东科技大学, 2020.YAO Geng. Characterization of hydration reaction of mechanically activated siliceous tailings[D]. Qingdao:Shandong University of Science and Technology, 2020. (in Chinese)
    [12] VARGAS F, MAURICIO L. Development of a new supplementary cementitious material from the activation of copper tailings:Mechanical performance and analysis of factors[J]. Journal of Cleaner Production, 2018, 182:427-436.
    [13] KIVENTERA J, SREENIVASAN H, CHEESEMAN C, et al. Immobilization of sulfates and heavy metals in gold mine tailings by sodium silicate and hydrated lime[J]. Journal of Environmental Chemical Engineering, 2018, 6:6530-6536.
    [14] WEI B, ZHANG Y M, BAO S X. Preparation of geopolymers from vanadium tailings by mechanical activation[J]. Construction and Building Materials, 2017, 145:236-242.
    [15] YAO G, LIU Q, WANG J X, et al. Effect of mechanical grinding on pozzolanic activity and hydration properties of siliceous gold ore tailings[J]. Journal of Cleaner Production, 2019, 217:12-21.
    [16] MAKO E, FROST R L, KRISTOF J, et al. The Effect of quartz content on the mechanochemical activation of kaolinite[J]. Journal of Colloid and Interface Science, 2001, 244:359-364.
    [17] COCCO C, GARRONI S, ENZO S, et al. Ball milling of silica-based pyroclastic scoriae:Measurement of mechanochemical reactivity by radical scavenging[J]. The Journal of Physical Chemistry C, 2018, 122:2773-2782.
    [18] PACHECO-TORGAL F, CASTRO-GOMES J, JALALI S, et al. Investigations about the effect of aggregates on strength and microstructure of geopolymeric mine waste mud binders[J]. Cement and Concrete Research, 2007, 37:933-941.
    [19] 李北星, 陈梦义, 王威, 等. 梯级粉磨制备铁尾矿-矿渣基胶凝材料[J]. 建筑材料学报, 2014, 17(2):206-211.LI Beixing, CHEN Mengyi, WANG Wei, et al. Preparation of iron tailings and slag based cementing materials by step grinding [J]. Journal of Building Materials, 2014, 17(2):206-211. (in Chinese)
    [20] CHENG Y H, HUANG F, LI W C, et al. Test research on the effects of mechanochemically activated iron tailings on the compressive strength of concrete[J]. Construction and Building Materials, 2016, 118:164-170.
    [21] PENG K, YANG H M, OUYANG J. Tungsten tailing powders activated for use as cementitious material[J]. Powder Technology, 2015, 286:678-683.
    [22] NIU H, HELSER J, CORFE I J, et al. Incorporation of bioleached sulfidic mine tailings in one-part alkali-activated blast furnace slag mortar[J]. Construction and Building Materials, 2022, 333:127195.
    [23] 张钊. 碳酸盐粉体对砂浆性能的影响研究[D]. 重庆:重庆大学, 2016.ZHANG Zhao. Research on the effect of carbonate powder on mortar properties[D]. Chongqing:Chongqing University, 2016. (in Chinese)
    [24] 刘数华, 阎培渝. 石灰石粉在复合胶凝材料中的水化性能[J]. 硅酸盐学报, 2008(10):1401-1405.LIU Shuhua, YAN Peiyu. Hydration properties of limestone powder in composite cementitious materials[J]. Journal of the Chinese Ceramic Society, 2008(10):1401-1405. (in Chinese)
    [25] FERNANDEZ R, MARTIRENA F, SCRIVENER K L. The origin of the pozzolanic activity of calcined clay minerals:A comparison between kaolinite, illite and montmorillonite[J]. Cement and Concrete Research, 2011, 41:113-122.
    [26] LI C, WAN J H, SUN H H, et al. Investigation on the activation of coal gangue by a new compound method[J]. Journal of Hazardous Materials, 2010, 179(1-3):515-520.
    [27] PROVIS J L. Alkali activated materials[J]. Cement and Concrete Research, 2018, 114:40-48.
    [28] ZHAO Y L, QIU J P, GUO Z B, et al. Activation the hydration properties of illite-containing tailings to prepare a binder for cemented paste backfill[J]. Construction and Building Materials, 2022, 318:125989.
    [29] YU L, ZHANG Z, HUANG X, et al. Enhancement experiment on cementitious activity of copper-mine tailings in a geopolymer system[J]. Fibers, 2017, 5(4):47.
    [30] KIVENTERA J, LANCELLOTTI I, CATAURO M, et al. Alkali activation as new option for gold mine tailings inertization[J]. Journal of Cleaner Production, 2018, 187:76-84.
    [31] 周宇, 徐方, 顾功辉, 等. 地聚合物早期抗压强度及分子动力学模拟[J]. 建筑材料学报, 2021, 24 (1):93-98, 120.ZHOU Yu, XU Fang, GU Gonghui, et al. Early compressive strength and molecular dynamics simulation of geopolymers [J]. Journal of Building Materials, 2021, 24 (1):93-98, 120. (in Chinese)
    [32] SHI C J, QU B, PROVIS J L. Recent progress in low-carbon binders [J]. Cement and Concrete Research, 2019, 122:227-250.
    [33] KE X Y, BERNAL S A, YE N, et al. One-part geo-polymers based on thermally treated red mud/NaOH blends[J]. Journal of the American Ceramic Society, 2015, 98(1):5-11.
    [34] LIN W Q, ZHOU F Y, LUO W J, et al. Effect of alkali cation type on compressive strength and thermal performance of the alkali-activated omphacite tailing [J]. Construction and Building Materials, 2021, 306:124647.
    [35] BAO S X, LUO Y P, ZHANG Y M. Fabrication of green one-part geopolymer from silica-rich vanadium tailing via thermal activation and modification[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29:177-184.
    [36] CIHANGIR F, ERCIKDI B, KESIMAL A, et al. Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings:Effect of binder type and dosage[J]. Minerals Engineering, 2012, 30:33-43.
    [37] TIAN X, XU W Y, SONG S X, et al. Effects of curing temperature on the compressive strength and microstructure of copper tailing-based geopolymers[J]. Chemosphere, 2020, 253:126754.
    [38] LIU Q, LI X C, CUI M Y, et al. Preparation of eco-friendly one-part geopolymers from gold mine tailings by alkaline hydrothermal activation[J]. Journal of Cleaner Production, 2021, 298:126806.
    [39] WAN Q, RAO F, SONG S X, et al. Consolidation of mine tailings through geopolymer-ization at ambient temperature[J]. Journal of the American ceramic society, 2019,102(5):2451-2461.
    [40] 郑蕻陈,刘琳.碱激发体系凝结时间和早期抗压强度变化规律[J].建筑材料学报,2023,26(11):1214-1219.ZHENG Hongchen, LIU Lin. Variation of coagulation time and early compressive strength of alkali excitation system[J]. Journal of Building Materials, 2019,26(11):1214-1219. (in Chinese)
    [41] ESPEJEL-AYALA F, SOLIS-LOPEZ M, SCHOUWENAARS R, et al. Sintesis de zeolita P utilizando jales de cobre[J]. Revista Mexicana de Ingeniería Química, 2015, 14(1):205-212.
    [42] 殷义栋, 鲁安怀, 李艳, 等.大庆油田三元复合驱液与储层矿物反应性研究[J]. 岩石矿物学杂志, 2015, 34(6):811-820.YIN Yidong, LU Anhuai, LI Yan, et al. Study on reactivity of ternary compound flooding and reservoir minerals in Daqing Oilfield [J]. Journal of Petromineralogy, 2015, 34(6):811-820. (in Chinese)
    [43] LUXAN M P, MADRUGA F, SAAVEDRA J. Rapid evaluation of pozzolanic activity of natural products by conductivity measurement[J]. Cement and Concrete Research, 1989, 19(1), 63-68.
    [44] SICAKOVA A, KOVAC M. Technological characterisation of selected mineral additives[J]. IOP Conference Series:Materials Science and Engineering, 2018, 385:012048.
    [45] INCE C. Reusing gold-mine tailings in cement mortars:Mechanical properties and socio-economic developments for the Lefke-Xeros area of Cyprus[J]. Journal of Cleaner Production, 2019, 238:117871.
    [46] 林伟青, 周方圆, 罗文君, 等. 养护温度对白云岩碱激发净浆断裂性能的影响[J]. 建筑材料学报, 2022, 25(7):672-676, 729.LIN Weiqing, ZHOU Fangyuan, LUO Wenjun, et al. Effect of curing temperature on fracture performance of dolomite alkali excited pure pulp [J]. Journal of Building Materials, 2022, 25(7):672-676, 729. (in Chinese)
    [47] 李克亮. 碱激发水泥固化重金属和放射性金属分析[J]. 建筑材料学报, 2013, 16(2):310-314.LI Keliang. Analysis of heavy metals and radioactive metals soldified by alkali excited cement [J]. Journal of Building Materials, 2013, 16(2):310-314. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

施麟芸,匡敬忠,刘松柏.尾矿制备辅助胶凝材料的潜能与机制评述[J].建筑材料学报,2024,27(10):922-930

复制
分享
文章指标
  • 点击次数:131
  • 下载次数: 65
  • HTML阅读次数: 6
  • 引用次数: 0
历史
  • 收稿日期:2024-02-12
  • 最后修改日期:2024-05-07
  • 在线发布日期: 2024-11-08
文章二维码